These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 16433904)
21. Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Wang J; Pichersky E Arch Biochem Biophys; 1999 Aug; 368(1):172-80. PubMed ID: 10415125 [TBL] [Abstract][Full Text] [Related]
23. Approaches for studying microRNA and small interfering RNA methylation in vitro and in vivo. Yang Z; Vilkaitis G; Yu B; Klimasauskas S; Chen X Methods Enzymol; 2007; 427():139-54. PubMed ID: 17720483 [TBL] [Abstract][Full Text] [Related]
24. Mechanistic insights into small RNA recognition and modification by the HEN1 methyltransferase. Plotnikova A; Baranauskė S; Osipenko A; Klimašauskas S; Vilkaitis G Biochem J; 2013 Jul; 453(2):281-90. PubMed ID: 23621770 [TBL] [Abstract][Full Text] [Related]
25. Kinetic and functional analysis of the small RNA methyltransferase HEN1: the catalytic domain is essential for preferential modification of duplex RNA. Vilkaitis G; Plotnikova A; Klimasauskas S RNA; 2010 Oct; 16(10):1935-42. PubMed ID: 20705645 [TBL] [Abstract][Full Text] [Related]
26. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. Birkenbihl RP; Jach G; Saedler H; Huijser P J Mol Biol; 2005 Sep; 352(3):585-96. PubMed ID: 16095614 [TBL] [Abstract][Full Text] [Related]
27. Bacterial Hen1 is a 3' terminal RNA ribose 2'-O-methyltransferase component of a bacterial RNA repair cassette. Jain R; Shuman S RNA; 2010 Feb; 16(2):316-23. PubMed ID: 20007328 [TBL] [Abstract][Full Text] [Related]
28. Novel Sm-like proteins with long C-terminal tails and associated methyltransferases. Albrecht M; Lengauer T FEBS Lett; 2004 Jul; 569(1-3):18-26. PubMed ID: 15225602 [TBL] [Abstract][Full Text] [Related]
29. Molecular characterization of a putative plant homolog of MBD4 DNA glycosylase. Ramiro-Merina Á; Ariza RR; Roldán-Arjona T DNA Repair (Amst); 2013 Nov; 12(11):890-8. PubMed ID: 23994068 [TBL] [Abstract][Full Text] [Related]
30. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. Bujnicki JM; Feder M; Radlinska M; Blumenthal RM J Mol Evol; 2002 Oct; 55(4):431-44. PubMed ID: 12355263 [TBL] [Abstract][Full Text] [Related]
31. S-Adenosyl-L-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Ross JR; Nam KH; D'Auria JC; Pichersky E Arch Biochem Biophys; 1999 Jul; 367(1):9-16. PubMed ID: 10375393 [TBL] [Abstract][Full Text] [Related]
32. Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation. Bujnicki JM In Silico Biol; 1999-2000; 1(4):175-82. PubMed ID: 11479932 [TBL] [Abstract][Full Text] [Related]
33. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. Tkaczuk KL; Dunin-Horkawicz S; Purta E; Bujnicki JM BMC Bioinformatics; 2007 Mar; 8():73. PubMed ID: 17338813 [TBL] [Abstract][Full Text] [Related]
34. Insights into the catalytic mechanism of 16S rRNA methyltransferase RsmE (m³U1498) from crystal and solution structures. Zhang H; Wan H; Gao ZQ; Wei Y; Wang WJ; Liu GF; Shtykova EV; Xu JH; Dong YH J Mol Biol; 2012 Nov; 423(4):576-89. PubMed ID: 22925577 [TBL] [Abstract][Full Text] [Related]
35. Phylogenetic and Evolutionary Analysis of Plant Small RNA 2'-O-Methyltransferase (HEN1) Protein Family. Hajieghrari B; Niazi A J Mol Evol; 2023 Aug; 91(4):424-440. PubMed ID: 37191719 [TBL] [Abstract][Full Text] [Related]
36. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. Koonin EV J Gen Virol; 1993 Apr; 74 ( Pt 4)():733-40. PubMed ID: 8385698 [TBL] [Abstract][Full Text] [Related]
37. Selective covalent labeling of miRNA and siRNA duplexes using HEN1 methyltransferase. Plotnikova A; Osipenko A; Masevičius V; Vilkaitis G; Klimašauskas S J Am Chem Soc; 2014 Oct; 136(39):13550-3. PubMed ID: 25170533 [TBL] [Abstract][Full Text] [Related]
38. Enzyme redesign and interactions of substrate analogues with sterol methyltransferase to understand phytosterol diversity, reaction mechanism and the nature of the active site. Nes WD Biochem Soc Trans; 2005 Nov; 33(Pt 5):1189-96. PubMed ID: 16246079 [TBL] [Abstract][Full Text] [Related]
39. The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing. Wu F; Yu L; Cao W; Mao Y; Liu Z; He Y Plant Cell; 2007 Mar; 19(3):914-25. PubMed ID: 17337628 [TBL] [Abstract][Full Text] [Related]
40. Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Kagan RM; Clarke S Arch Biochem Biophys; 1994 May; 310(2):417-27. PubMed ID: 8179327 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]