BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 16433924)

  • 1. Loss of NAD(H) from swollen yeast mitochondria.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Jan; 7():3. PubMed ID: 16433924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria.
    Koshkin V; Greenberg ML
    Biochem J; 2002 May; 364(Pt 1):317-22. PubMed ID: 11988106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel.
    Gutiérrez-Aguilar M; Pérez-Martínez X; Chávez E; Uribe-Carvajal S
    Arch Biochem Biophys; 2010 Feb; 494(2):184-91. PubMed ID: 19995548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closure of the yeast mitochondria unspecific channel (YMUC) unmasks a Mg2+ and quinine sensitive K+ uptake pathway in Saccharomyces cerevisiae.
    Castrejón V; Peña A; Uribe S
    J Bioenerg Biomembr; 2002 Aug; 34(4):299-306. PubMed ID: 12392193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Saccharomyces cerevisiae, cations control the fate of the energy derived from oxidative metabolism through the opening and closing of the yeast mitochondrial unselective channel.
    Pérez-Vázquez V; Saavedra-Molina A; Uribe S
    J Bioenerg Biomembr; 2003 Jun; 35(3):231-41. PubMed ID: 13678274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast mitochondrial metabolism: from in vitro to in situ quantitative study.
    Avéret N; Fitton V; Bunoust O; Rigoulet M; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):67-79. PubMed ID: 9746313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.
    Bradshaw PC; Pfeiffer DR
    Yeast; 2013 Dec; 30(12):471-83. PubMed ID: 24166770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae.
    Bakker BM; Overkamp KM; van Maris AJ ; Kötter P; Luttik MA; van Dijken JP ; Pronk JT
    FEMS Microbiol Rev; 2001 Jan; 25(1):15-37. PubMed ID: 11152939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of the TOM complex in external NADH transport into yeast mitochondria depleted of mitochondrial porin1.
    Kmita H; Budzińska M
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):86-94. PubMed ID: 11118520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The access of metabolites into yeast mitochondria in the presence and absence of the voltage dependent anion selective channel (YVDAC1).
    Kmita H; Stobienia O; Michejda J
    Acta Biochim Pol; 1999; 46(4):991-1000. PubMed ID: 10824870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the voltage-dependent anion-selective channel by cytoplasmic proteins from wild type and the channel depleted cells of Saccharomyces cerevisiae.
    Kmita H; Budzińska M; Stobienia O
    Acta Biochim Pol; 2003; 50(2):415-24. PubMed ID: 12833167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants.
    Gomes F; Tahara EB; Busso C; Kowaltowski AJ; Barros MH
    Biochem J; 2013 Feb; 449(3):595-603. PubMed ID: 23116202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae.
    Påhlman IL; Gustafsson L; Rigoulet M; Larsson C
    Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative phosphorylation in Debaryomyces hansenii: physiological uncoupling at different growth phases.
    Cabrera-Orefice A; Guerrero-Castillo S; Díaz-Ruíz R; Uribe-Carvajal S
    Biochimie; 2014 Jul; 102():124-36. PubMed ID: 24657599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport.
    Pastore D; Di Pede S; Passarella S
    Plant Physiol; 2003 Dec; 133(4):2029-39. PubMed ID: 14671011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria.
    Jung DW; Bradshaw PC; Pfeiffer DR
    J Biol Chem; 1997 Aug; 272(34):21104-12. PubMed ID: 9261114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of depletion of voltage dependent anion selective channel on protein import into the yeast Saccharomyces cerevisiae mitochondria.
    Szczechowicz A; Hryniewiecka L; Kmita H
    Acta Biochim Pol; 2001; 48(3):719-28. PubMed ID: 11833780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.