These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16433932)

  • 21. Agonist/antagonist properties of nalbuphine, butorphanol and (-)-pentazocine in male vs. female rats.
    Craft RM; McNiel DM
    Pharmacol Biochem Behav; 2003 Apr; 75(1):235-45. PubMed ID: 12759132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opioid interactions in rhesus monkeys: effects of delta + mu and delta + kappa agonists on schedule-controlled responding and thermal nociception.
    Stevenson GW; Folk JE; Linsenmayer DC; Rice KC; Negus SS
    J Pharmacol Exp Ther; 2003 Dec; 307(3):1054-64. PubMed ID: 14557380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. kappa-Opioid receptor effects of butorphanol in rhesus monkeys.
    Vivian JA; DeYoung MB; Sumpter TL; Traynor JR; Lewis JW; Woods JH
    J Pharmacol Exp Ther; 1999 Jul; 290(1):259-65. PubMed ID: 10381785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The kappa-opioid antagonist GNTI reduces U50,488-, DAMGO-, and deprivation-induced feeding, but not butorphanol- and neuropeptide Y-induced feeding in rats.
    Jewett DC; Grace MK; Jones RM; Billington CJ; Portoghese PS; Levine AS
    Brain Res; 2001 Aug; 909(1-2):75-80. PubMed ID: 11478923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Affinity, potency, efficacy, selectivity, and molecular modeling of substituted fentanyls at opioid receptors.
    Eshleman AJ; Nagarajan S; Wolfrum KM; Reed JF; Nilsen A; Torralva R; Janowsky A
    Biochem Pharmacol; 2020 Dec; 182():114293. PubMed ID: 33091380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of serotonin transporter function by kappa-opioid receptor ligands.
    Sundaramurthy S; Annamalai B; Samuvel DJ; Shippenberg TS; Jayanthi LD; Ramamoorthy S
    Neuropharmacology; 2017 Feb; 113(Pt A):281-292. PubMed ID: 27743931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mu opioid irreversible antagonist beta-funaltrexamine differentiates the discriminative stimulus effects of opioids with high and low efficacy at the mu opioid receptor.
    Morgan D; Picker MJ
    Psychopharmacology (Berl); 1998 Nov; 140(1):20-8. PubMed ID: 9862398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methocinnamox is a potent, long-lasting, and selective antagonist of morphine-mediated antinociception in the mouse: comparison with clocinnamox, beta-funaltrexamine, and beta-chlornaltrexamine.
    Broadbear JH; Sumpter TL; Burke TF; Husbands SM; Lewis JW; Woods JH; Traynor JR
    J Pharmacol Exp Ther; 2000 Sep; 294(3):933-40. PubMed ID: 10945843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential agonist regulation of the human kappa-opioid receptor.
    Blake AD; Bot G; Li S; Freeman JC; Reisine T
    J Neurochem; 1997 May; 68(5):1846-52. PubMed ID: 9109509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining pharmacological selectivity of the kappa opioid receptor antagonist LY2456302 using pupillometry as a translational biomarker in rat and human.
    Rorick-Kehn LM; Witcher JW; Lowe SL; Gonzales CR; Weller MA; Bell RL; Hart JC; Need AB; McKinzie JH; Statnick MA; Suico JG; McKinzie DL; Tauscher-Wisniewski S; Mitch CH; Stoltz RR; Wong CJ
    Int J Neuropsychopharmacol; 2014 Oct; 18(2):. PubMed ID: 25637376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of beta-funaltrexamine to determine mu opioid receptor involvement in the analgesic activity of various opioid ligands.
    Zimmerman DM; Leander JD; Reel JK; Hynes MD
    J Pharmacol Exp Ther; 1987 May; 241(2):374-8. PubMed ID: 3033213
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discriminative stimulus effects of acute morphine followed by naltrexone in the squirrel monkey: a further characterization.
    White DA; Holtzman SG
    J Pharmacol Exp Ther; 2005 Jul; 314(1):374-82. PubMed ID: 15843500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphine can produce analgesia via spinal kappa opioid receptors in the absence of mu opioid receptors.
    Yamada H; Shimoyama N; Sora I; Uhl GR; Fukuda Y; Moriya H; Shimoyama M
    Brain Res; 2006 Apr; 1083(1):61-9. PubMed ID: 16530171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effectiveness comparisons of G-protein biased and unbiased mu opioid receptor ligands in warm water tail-withdrawal and drug discrimination in male and female rats.
    Schwienteck KL; Faunce KE; Rice KC; Obeng S; Zhang Y; Blough BE; Grim TW; Negus SS; Banks ML
    Neuropharmacology; 2019 May; 150():200-209. PubMed ID: 30660628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Down-regulation of mu-opioid receptor by full but not partial agonists is independent of G protein coupling.
    Yabaluri N; Medzihradsky F
    Mol Pharmacol; 1997 Nov; 52(5):896-902. PubMed ID: 9351981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A kappa opioid effect: increased urination in the rat.
    Leander JD
    J Pharmacol Exp Ther; 1983 Jan; 224(1):89-94. PubMed ID: 6294284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-alkylated derivatives of [D-Pro10]dynorphin A-(1-11) are high affinity partial agonists at the cloned rat kappa-opioid receptor.
    Soderstrom K; Choi H; Berman FW; Aldrich JV; Murray TF
    Eur J Pharmacol; 1997 Nov; 338(2):191-7. PubMed ID: 9456002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enadoline discrimination in squirrel monkeys: effects of opioid agonists and antagonists.
    Carey GJ; Bergman J
    J Pharmacol Exp Ther; 2001 Apr; 297(1):215-23. PubMed ID: 11259547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiation of kappa opioid agonist-induced antinociception by naltrexone apparent pA2 analysis in rhesus monkeys.
    Ko MC; Butelman ER; Traynor JR; Woods JH
    J Pharmacol Exp Ther; 1998 May; 285(2):518-26. PubMed ID: 9580592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discriminative stimulus effects of opioids in pigeons trained to discriminate fentanyl, bremazocine and water: evidence of pharmacological selectivity.
    Picker MJ; Cook CD
    Behav Pharmacol; 1997 Jun; 8(2-3):160-73. PubMed ID: 9833011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.