These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16434074)

  • 41. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes.
    Coleman HM; Vimonses V; Leslie G; Amal R
    J Hazard Mater; 2007 Jul; 146(3):496-501. PubMed ID: 17574739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films.
    Zainal Z; Lee CY; Hussein MZ; Kassim A; Yusof NA
    J Hazard Mater; 2007 Jul; 146(1-2):73-80. PubMed ID: 17196740
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.
    Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K
    J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and performance of photocatalytic regenerationable activated carbon prepared via sol-gel TiO2.
    Liu SX; Sun CL
    J Environ Sci (China); 2006; 18(3):557-61. PubMed ID: 17294656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photocatalytic activity of TiO2 doped with boron and vanadium.
    Bettinelli M; Dallacasa V; Falcomer D; Fornasiero P; Gombac V; Montini T; Romanò L; Speghini A
    J Hazard Mater; 2007 Jul; 146(3):529-34. PubMed ID: 17521804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst.
    Mascolo G; Comparelli R; Curri ML; Lovecchio G; Lopez A; Agostiano A
    J Hazard Mater; 2007 Apr; 142(1-2):130-7. PubMed ID: 16982143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.
    Colina-Márquez J; Machuca-Martínez F; Li Puma G
    Environ Sci Technol; 2010 Jul; 44(13):5112-20. PubMed ID: 20527954
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid-TiO2 into MCM-41.
    Zanjanchi MA; Golmojdeh H; Arvand M
    J Hazard Mater; 2009 Sep; 169(1-3):233-9. PubMed ID: 19376648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process--influence of some operating parameters.
    Merabet S; Bouzaza A; Wolbert D
    J Hazard Mater; 2009 Jul; 166(2-3):1244-9. PubMed ID: 19167158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metallodielectric hollow shells: optical and catalytic properties.
    Pastoriza-Santos I; Pérez-Juste J; Carregal-Romero S; Hervés P; Liz-Marzán LM
    Chem Asian J; 2006 Nov; 1(5):730-6. PubMed ID: 17441116
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photocatalytic degradation of methyl red dye by silica nanoparticles.
    Badr Y; Abd El-Wahed MG; Mahmoud MA
    J Hazard Mater; 2008 Jun; 154(1-3):245-53. PubMed ID: 18055110
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photocatalytic oxidation using a new catalyst--TiO2 microsphere--for water and wastewater treatment.
    Li XZ; Liu H; Cheng LF; Tong HJ
    Environ Sci Technol; 2003 Sep; 37(17):3989-94. PubMed ID: 12967124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis.
    Fernández-Ibáñez P; Blanco J; Malato S; de las Nieves FJ
    Water Res; 2003 Jul; 37(13):3180-8. PubMed ID: 14509705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites.
    Franco A; Neves MC; Carrott MM; Mendonça MH; Pereira MI; Monteiro OC
    J Hazard Mater; 2009 Jan; 161(1):545-50. PubMed ID: 18495340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase.
    Liu TX; Li FB; Li XZ
    J Hazard Mater; 2008 Mar; 152(1):347-55. PubMed ID: 17706352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens.
    Monteagudo JM; Durán A; Guerra J; García-Peña F; Coca P
    Chemosphere; 2008 Mar; 71(1):161-7. PubMed ID: 18078669
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photocatalytic and electrochemical combined treatment of textile wash water.
    Neelavannan MG; Revathi M; Ahmed Basha C
    J Hazard Mater; 2007 Oct; 149(2):371-8. PubMed ID: 17509754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photocatalytic Properties of Titania Pillared Clays by Different Drying Methods.
    Ding Z; Zhu HY; Lu GQ; Greenfield PF
    J Colloid Interface Sci; 1999 Jan; 209(1):193-199. PubMed ID: 9878152
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of titania-supported platinum catalyst: the effect of pH on morphology control and valence state during photodeposition.
    Zhang F; Chen J; Zhang X; Gao W; Jin R; Guan N; Li Y
    Langmuir; 2004 Oct; 20(21):9329-34. PubMed ID: 15461525
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photocatalytic reduction of NO with NH3 using Si-doped TiO2 prepared by hydrothermal method.
    Jin R; Wu Z; Liu Y; Jiang B; Wang H
    J Hazard Mater; 2009 Jan; 161(1):42-8. PubMed ID: 18440132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.