BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16434105)

  • 1. Design of a torque-controlled manipulator to analyse the admittance of the wrist joint.
    Schouten AC; de Vlugt E; van Hilten JJ; van der Helm FC
    J Neurosci Methods; 2006 Jun; 154(1-2):134-41. PubMed ID: 16434105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counteractive relationship between the interaction torque and muscle torque at the wrist is predestined in ball-throwing.
    Hirashima M; Ohgane K; Kudo K; Hase K; Ohtsuki T
    J Neurophysiol; 2003 Sep; 90(3):1449-63. PubMed ID: 12966174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo estimation of the short-range stiffness of cross-bridges from joint rotation.
    van Eesbeek S; de Groot JH; van der Helm FC; de Vlugt E
    J Biomech; 2010 Sep; 43(13):2539-47. PubMed ID: 20541761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic nonlinear relations between displacement amplitude and joint mechanics at the human wrist.
    Halaki M; O'Dwyer N; Cathers I
    J Biomech; 2006; 39(12):2171-82. PubMed ID: 16125181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint angle control by FES using a feedback error learning controller.
    Kurosawa K; Futami R; Watanabe T; Hoshimiya N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of 3D limb dynamics in unconstrained overarm throws of different speeds performed by skilled baseball players.
    Hirashima M; Kudo K; Watarai K; Ohtsuki T
    J Neurophysiol; 2007 Jan; 97(1):680-91. PubMed ID: 17079349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short range stiffness elastic limit depends on joint velocity.
    de Vlugt E; van Eesbeek S; Baines P; Hilte J; Meskers CG; de Groot JH
    J Biomech; 2011 Jul; 44(11):2106-12. PubMed ID: 21640995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of wrist and forearm rotations.
    Peaden AW; Charles SK
    J Biomech; 2014 Aug; 47(11):2779-85. PubMed ID: 24745814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving net joint torque calculations through a two-step optimization method for estimating body segment parameters.
    Riemer R; Hsiao-Wecksler ET
    J Biomech Eng; 2009 Jan; 131(1):011007. PubMed ID: 19045923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in joint stability with muscle contraction measured from transmission of mechanical vibration.
    Feltham MG; van Dieën JH; Coppieters MW; Hodges PW
    J Biomech; 2006; 39(15):2850-6. PubMed ID: 16263128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Winching up heavy loads with a compliant arm: a new local joint controller.
    Schneider A; Cruse H; Schmitz J
    Biol Cybern; 2008 May; 98(5):413-26. PubMed ID: 18414891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational model of a primate arm: from hand position to joint angles, joint torques and muscle forces.
    Chan SS; Moran DW
    J Neural Eng; 2006 Dec; 3(4):327-37. PubMed ID: 17124337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture.
    Shin D; Kim J; Koike Y
    J Neurophysiol; 2009 Jan; 101(1):387-401. PubMed ID: 19005007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robotic apparatus that dictates torque fields around joints without affecting inherent joint dynamics.
    Oytam Y; Lloyd D; Reid CS; de Rugy A; Carson RG
    Hum Mov Sci; 2010 Oct; 29(5):701-12. PubMed ID: 20728232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A force-controlled planar haptic device for movement control analysis of the human arm.
    de Vlugt E; Schouten AC; van der Helm FC; Teerhuis PC; Brouwn GG
    J Neurosci Methods; 2003 Oct; 129(2):151-68. PubMed ID: 14511818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new myohaptic instrument to assess wrist motion dynamically.
    Manto M; Van Den Braber N; Grimaldi G; Lammertse P
    Sensors (Basel); 2010; 10(4):3180-94. PubMed ID: 22319293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-contraction of the pronator teres and extensor carpi radialis during wrist extension movements in humans.
    Fujii H; Kobayashi S; Sato T; Shinozaki K; Naito A
    J Electromyogr Kinesiol; 2007 Feb; 17(1):80-9. PubMed ID: 16516494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decentralized adaptive robust control based on sliding mode and nonlinear compensator for the control of ankle movement using functional electrical stimulation of agonist-antagonist muscles.
    Kobravi HR; Erfanian A
    J Neural Eng; 2009 Aug; 6(4):046007. PubMed ID: 19587395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.