These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 16435170)
1. Application of nonlinear analysis methods for identifying relationships between microbial community structure and groundwater geochemistry. Schryver JC; Brandt CC; Pfiffner SM; Palumbo AV; Peacock AD; White DC; McKinley JP; Long PE Microb Ecol; 2006 Feb; 51(2):177-88. PubMed ID: 16435170 [TBL] [Abstract][Full Text] [Related]
2. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Chang YJ; Peacock AD; Long PE; Stephen JR; McKinley JP; Macnaughton SJ; Hussain AK; Saxton AM; White DC Appl Environ Microbiol; 2001 Jul; 67(7):3149-60. PubMed ID: 11425735 [TBL] [Abstract][Full Text] [Related]
3. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater. Cho K; Zholi A; Frabutt D; Flood M; Floyd D; Tiquia SM Environ Technol; 2012; 33(13-15):1629-40. PubMed ID: 22988623 [TBL] [Abstract][Full Text] [Related]
4. Characterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailings. Elias DA; Krumholz LR; Wong D; Long PE; Suflita JM Microb Ecol; 2003 Jul; 46(1):83-91. PubMed ID: 12754659 [TBL] [Abstract][Full Text] [Related]
6. Phylogenetic and functional biomakers as indicators of bacterial community responses to mixed-waste contamination. Fields MW; Bagwell CE; Carroll SL; Yan T; Liu X; Watson DB; Jardine PM; Criddle CS; Hazen TC; Zhou J Environ Sci Technol; 2006 Apr; 40(8):2601-7. PubMed ID: 16683598 [TBL] [Abstract][Full Text] [Related]
7. Impacts on microbial communities and cultivable isolates from groundwater contaminated with high levels of nitric acid-uranium waste. Fields MW; Yan T; Rhee SK; Carroll SL; Jardine PM; Watson DB; Criddle CS; Zhou J FEMS Microbiol Ecol; 2005 Aug; 53(3):417-28. PubMed ID: 16329960 [TBL] [Abstract][Full Text] [Related]
8. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning. He Z; Zhang P; Wu L; Rocha AM; Tu Q; Shi Z; Wu B; Qin Y; Wang J; Yan Q; Curtis D; Ning D; Van Nostrand JD; Wu L; Yang Y; Elias DA; Watson DB; Adams MWW; Fields MW; Alm EJ; Hazen TC; Adams PD; Arkin AP; Zhou J mBio; 2018 Feb; 9(1):. PubMed ID: 29463661 [TBL] [Abstract][Full Text] [Related]
9. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Moon JW; Paradis CJ; Joyner DC; von Netzer F; Majumder EL; Dixon ER; Podar M; Ge X; Walian PJ; Smith HJ; Wu X; Zane GM; Walker KF; Thorgersen MP; Poole Ii FL; Lui LM; Adams BG; De León KB; Brewer SS; Williams DE; Lowe KA; Rodriguez M; Mehlhorn TL; Pfiffner SM; Chakraborty R; Arkin AP; Wall JD; Fields MW; Adams MWW; Stahl DA; Elias DA; Hazen TC Chemosphere; 2020 Sep; 255():126951. PubMed ID: 32417512 [TBL] [Abstract][Full Text] [Related]
11. The use of phospholipid fatty acid analysis to measure impact of acid rock drainage on microbial communities in sediments. Ben-David EA; Holden PJ; Stone DJ; Harch BD; Foster LJ Microb Ecol; 2004 Oct; 48(3):300-15. PubMed ID: 15692850 [TBL] [Abstract][Full Text] [Related]
12. Microbial response to heavy metal-polluted soils: community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. Hinojosa MB; Carreira JA; García-Ruíz R; Dick RP J Environ Qual; 2005; 34(5):1789-800. PubMed ID: 16151231 [TBL] [Abstract][Full Text] [Related]
13. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Waldrop MP; Firestone MK Microb Ecol; 2006 Oct; 52(3):470-9. PubMed ID: 16909344 [TBL] [Abstract][Full Text] [Related]
14. A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: Application to uranium bioreduction. Istok JD; Park M; Michalsen M; Spain AM; Krumholz LR; Liu C; McKinley J; Long P; Roden E; Peacock AD; Baldwin B J Contam Hydrol; 2010 Mar; 112(1-4):1-14. PubMed ID: 19683832 [TBL] [Abstract][Full Text] [Related]
15. Spatial and halophyte-associated microbial communities in intertidal coastal region of India. Chaudhary DR; Rathore AP; Kumar R; Jha B Int J Phytoremediation; 2017 May; 19(5):478-489. PubMed ID: 27739867 [TBL] [Abstract][Full Text] [Related]
16. Application of neural computing methods for interpreting phospholipid fatty acid profiles of natural microbial communities. Noble PA; Almeida JS; Lovell CR Appl Environ Microbiol; 2000 Feb; 66(2):694-9. PubMed ID: 10653738 [TBL] [Abstract][Full Text] [Related]
17. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA. Cowie BR; Greenberg BM; Slater GF Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610 [TBL] [Abstract][Full Text] [Related]
19. Sterols and fatty acid biomarkers as indicators of changes in soil microbial communities in a uranium mine area. Guedes MJ; Pereira R; Duarte K; Rocha-Santos TA; Antunes SC; Gonçalves F; Duarte AC; Freitas AC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(6):659-68. PubMed ID: 21547821 [TBL] [Abstract][Full Text] [Related]
20. Phospholipid fatty acid biomarkers in a freshwater periphyton community exposed to uranium: discovery by non-linear statistical learning. Webb-Robertson BJ; Bunn AL; Bailey VL J Environ Radioact; 2011 Jan; 102(1):64-71. PubMed ID: 20952106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]