BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16435285)

  • 1. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).
    MacLeod KM; Soares D; Carr CE
    J Comp Neurol; 2006 Mar; 495(2):185-201. PubMed ID: 16435285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
    Palanca-Castan N; Köppl C
    Front Neural Circuits; 2015; 9():43. PubMed ID: 26347616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of interaural time differences in the alligator.
    Carr CE; Soares D; Smolders J; Simon JZ
    J Neurosci; 2009 Jun; 29(25):7978-90. PubMed ID: 19553438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coincidence detection by binaural neurons in the chick brain stem.
    Joseph AW; Hyson RL
    J Neurophysiol; 1993 Apr; 69(4):1197-211. PubMed ID: 8492159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A circuit for detection of interaural time differences in the brain stem of the barn owl.
    Carr CE; Konishi M
    J Neurosci; 1990 Oct; 10(10):3227-46. PubMed ID: 2213141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The analysis of interaural time differences in the chick brain stem.
    Hyson RL
    Physiol Behav; 2005 Oct; 86(3):297-305. PubMed ID: 16202434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick.
    Kuba H; Yamada R; Fukui I; Ohmori H
    J Neurosci; 2005 Feb; 25(8):1924-34. PubMed ID: 15728832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
    Brückner S; Hyson RL
    Eur J Neurosci; 1998 Nov; 10(11):3438-50. PubMed ID: 9824457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A circuit for coding interaural time differences in the chick brainstem.
    Overholt EM; Rubel EW; Hyson RL
    J Neurosci; 1992 May; 12(5):1698-708. PubMed ID: 1578264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.
    Yamada R; Okuda H; Kuba H; Nishino E; Ishii TM; Ohmori H
    J Neurosci; 2013 Feb; 33(9):3927-38. PubMed ID: 23447603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit.
    Lu Y; Liu Y; Curry RJ
    J Physiol; 2018 May; 596(10):1981-1997. PubMed ID: 29572827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tonotopic tuning in a sound localization circuit.
    Slee SJ; Higgs MH; Fairhall AL; Spain WJ
    J Neurophysiol; 2010 May; 103(5):2857-75. PubMed ID: 20220079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maps of ITD in the nucleus laminaris of the barn owl.
    Carr C; Shah S; Ashida G; McColgan T; Wagner H; Kuokkanen PT; Kempter R; Köppl C
    Adv Exp Med Biol; 2013; 787():215-22. PubMed ID: 23716226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection.
    Seidl AH; Rubel EW; Harris DM
    J Neurosci; 2010 Jan; 30(1):70-80. PubMed ID: 20053889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling coincidence detection in nucleus laminaris.
    Grau-Serrat V; Carr CE; Simon JZ
    Biol Cybern; 2003 Nov; 89(5):388-96. PubMed ID: 14669019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the delay lines in the nucleus laminaris of the chicken embryo revealed by optical imaging.
    Görlich A; Illy M; Friauf E; Wagner H; Luksch H; Löhrke S
    Neuroscience; 2010 Jun; 168(2):564-72. PubMed ID: 20394725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem.
    Kuo SP; Bradley LA; Trussell LO
    J Neurosci; 2009 Jul; 29(30):9625-34. PubMed ID: 19641125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency pathway in the barn owl's auditory brainstem.
    Köppl C; Carr CE
    J Comp Neurol; 1997 Feb; 378(2):265-82. PubMed ID: 9120065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.