These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 1643581)

  • 1. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85.
    Matte A; Forsberg CW; Verrinder Gibbins AM
    Can J Microbiol; 1992 May; 38(5):370-6. PubMed ID: 1643581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium.
    Strobel HJ
    Appl Environ Microbiol; 1993 Jan; 59(1):40-6. PubMed ID: 8439166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cellular location of Prevotella ruminicola beta-1,4-D-endoglucanase and its occurrence in other strains of ruminal bacteria.
    Gardner RG; Wells JE; Russell JB; Wilson DB
    Appl Environ Microbiol; 1995 Sep; 61(9):3288-92. PubMed ID: 7574639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
    Strobel HJ
    Arch Microbiol; 1993; 159(5):465-71. PubMed ID: 8484709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria.
    Fukuma NM; Koike S; Kobayashi Y
    Arch Microbiol; 2015 Mar; 197(2):269-76. PubMed ID: 25354721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture with Fibrobacter succinogenes S85.
    Fukuma N; Koike S; Kobayashi Y
    FEMS Microbiol Lett; 2012 Nov; 336(1):17-25. PubMed ID: 22849722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria.
    Cotta MA
    Appl Environ Microbiol; 1990 Dec; 56(12):3867-70. PubMed ID: 1707252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria.
    Ling JR; Armstead IP
    J Appl Bacteriol; 1995 Feb; 78(2):116-24. PubMed ID: 7698948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
    Hespell RB; Wolf R; Bothast RJ
    Appl Environ Microbiol; 1987 Dec; 53(12):2849-53. PubMed ID: 3124741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages.
    Fondevila M; Dehority BA
    J Anim Sci; 1996 Mar; 74(3):678-84. PubMed ID: 8707727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium.
    Scheifinger CC; Wolin MJ
    Appl Microbiol; 1973 Nov; 26(5):789-95. PubMed ID: 4796955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and identification of rumen bacteria constituting a fibrolytic consortium dominated by Fibrobacter succinogenes.
    Shinkai T; Ueki T; Kobayashi Y
    Anim Sci J; 2010 Feb; 81(1):72-9. PubMed ID: 20163675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens.
    Miron J; Ben-Ghedalia D
    Can J Microbiol; 1993 Aug; 39(8):780-6. PubMed ID: 8221378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DEGRADATION AND UTILIZATION OF ISOLATED HEMICELLULOSE BY PURE CULTURES OF CELLULOLYTIC RUMEN BACTERIA.
    DEHORITY BA
    J Bacteriol; 1965 Jun; 89(6):1515-20. PubMed ID: 14291590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylooligosaccharide utilization by the ruminal anaerobic bacterium Selenomonas ruminantium.
    Cotta MA; Whitehead TR
    Curr Microbiol; 1998 Apr; 36(4):183-9. PubMed ID: 9504982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24.
    Hector RE; Dien BS; Cotta MA; Mertens JA
    Biotechnol Biofuels; 2013 May; 6(1):84. PubMed ID: 23721368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola.
    Avgustin G; Wallace RJ; Flint HJ
    Int J Syst Bacteriol; 1997 Apr; 47(2):284-8. PubMed ID: 9103611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria.
    Miron J
    J Appl Bacteriol; 1991 Mar; 70(3):245-52. PubMed ID: 2030098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity and properties of fumarate reductase in ruminal bacteria.
    Asanuma N; Hino T
    J Gen Appl Microbiol; 2000 Jun; 46(3):119-125. PubMed ID: 12483585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.