BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16435855)

  • 1. Resolution of methyl nonactate by Rhodococcus erythropolis under aerobic and anaerobic conditions.
    Nikodinovic J; Dinges JM; Bergmeier SC; McMills MC; Wright DL; Priestley ND
    Org Lett; 2006 Feb; 8(3):443-5. PubMed ID: 16435855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total syntheses of pamamycin 607 and methyl nonactate: stereoselective cyclisation of homoallylic alcohols that had been prepared with remote stereocontrol using allylstannanes.
    Germay O; Kumar N; Moore CG; Thomas EJ
    Org Biomol Chem; 2012 Dec; 10(48):9709-33. PubMed ID: 23154487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains.
    Fuller ME; Perreault N; Hawari J
    Lett Appl Microbiol; 2010 Sep; 51(3):313-8. PubMed ID: 20666987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Preparation of Rhodococcus erythropolis DSM 44534 as Biocatalyst to Oxidize Diols into the Optically Active Lactones.
    Martinez-Rojas E; Olejniczak T; Neumann K; Garbe LA; Boratyñski F
    Chirality; 2016 Sep; 28(9):623-7. PubMed ID: 27496202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial transformations in the biodegradation of benzothiazoles by Rhodococcus isolates.
    De Wever H; Vereecken K; Stolz A; Verachtert H
    Appl Environ Microbiol; 1998 Sep; 64(9):3270-4. PubMed ID: 9726870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly enantioselective oxidation of phenyl methyl sulfide and its derivatives into optically pure (S)-sulfoxides with Rhodococcus sp. CCZU10-1 in an n-octane-water biphasic system.
    He YC; Ma CL; Yang ZX; Zhou M; Xing Z; Ma JT; Yu HL
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10329-37. PubMed ID: 24092008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipase-mediated purification of methyl nonactate, an important natural product building block for diversity-oriented synthesis.
    Dinges JM; Bessette BA; Cox JE; Redder CR; Priestley ND
    Biotechnol Prog; 2006; 22(5):1354-7. PubMed ID: 17022674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dramatic enhancement of enantioselectivity of biotransformations of beta-hydroxy nitriles using a simple O-benzyl protection/docking group.
    Ma DY; Zheng QY; Wang DX; Wang MX
    Org Lett; 2006 Jul; 8(15):3231-4. PubMed ID: 16836373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic biotransformation of decalin (decahydronaphthalene) by Rhodococcus spp.
    Kirkwood KM; Chernik P; Foght JM; Gray MR
    Biodegradation; 2008 Nov; 19(6):785-94. PubMed ID: 18299805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of racemic sulfoxides with high productivity and enantioselectivity by a Rhodococcus sp. strain as an alternative to biooxidation of prochiral sulfides for efficient production of enantiopure sulfoxides.
    Li AT; Yu HL; Pan J; Zhang JD; Xu JH; Lin GQ
    Bioresour Technol; 2011 Jan; 102(2):1537-42. PubMed ID: 20810278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of beta-ketosulfides to produce chiral beta-hydroxysulfoxides.
    Holland HL; Brown FM; Barrett F; French J; Johnson DV
    J Ind Microbiol Biotechnol; 2003 May; 30(5):292-301. PubMed ID: 12759809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay of cascade oxidative cyclization and hydride shifts in the synthesis of the ABC spiroketal ring system of pectenotoxin-4.
    Donohoe TJ; Lipiński RM
    Angew Chem Int Ed Engl; 2013 Feb; 52(9):2491-4. PubMed ID: 23362216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis.
    Dong HP; Liu ZQ; Zheng YG; Shen YC
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1335-45. PubMed ID: 20393698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of beta-myrcene to geraniol by a strain of Rhodococcus erythropolis isolated by selective enrichment from hop plants.
    Thompson ML; Marriott R; Dowle A; Grogan G
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):721-30. PubMed ID: 19707757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor.
    Křiklavová L; Truhlář M; Škodováa P; Lederer T; Jirků V
    Bioresour Technol; 2014 Sep; 167():510-3. PubMed ID: 25013934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrile biotransformations for the efficient synthesis of highly enantiopure 1-arylaziridine-2-carboxylic acid derivatives and their stereoselective ring-opening reactions.
    Wang JY; Wang DX; Zheng QY; Huang ZT; Wang MX
    J Org Chem; 2007 Mar; 72(6):2040-5. PubMed ID: 17286438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.
    Tsuge Y; Hori Y; Kudou M; Ishii J; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8675-83. PubMed ID: 25112225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach toward constructing the trioxadispiroketal core in the DEF-ring of (+)-spirastrellolide A.
    Wu YB; Tang Y; Luo GY; Chen Y; Hsung RP
    Org Lett; 2014 Sep; 16(17):4550-3. PubMed ID: 25121803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The sulfate-reducing capacity of bacteria in the genus Pseudomonas].
    Kliushnikova TM; Chernyshenko DV; Kasatkina TP
    Mikrobiol Zh (1978); 1992; 54(2):49-54. PubMed ID: 1584088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The remarkable Rhodococcus erythropolis.
    de Carvalho CC; da Fonseca MM
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):715-26. PubMed ID: 15711940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.