These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16436204)

  • 1. GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease.
    Motsinger AA; Lee SL; Mellick G; Ritchie MD
    BMC Bioinformatics; 2006 Jan; 7():39. PubMed ID: 16436204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Programming Neural Networks: A Powerful Bioinformatics Tool for Human Genetics.
    Ritchie MD; Motsinger AA; Bush WS; Coffey CS; Moore JH
    Appl Soft Comput; 2007 Jan; 7(1):471-479. PubMed ID: 20948988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Log-linear model-based multifactor dimensionality reduction method to detect gene gene interactions.
    Lee SY; Chung Y; Elston RC; Kim Y; Park T
    Bioinformatics; 2007 Oct; 23(19):2589-95. PubMed ID: 17872915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphism Interaction Analysis (PIA): a method for investigating complex gene-gene interactions.
    Mechanic LE; Luke BT; Goodman JE; Chanock SJ; Harris CC
    BMC Bioinformatics; 2008 Mar; 9():146. PubMed ID: 18325117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis.
    Jonsson PF; Cavanna T; Zicha D; Bates PA
    BMC Bioinformatics; 2006 Jan; 7():2. PubMed ID: 16398927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases.
    Ritchie MD; White BC; Parker JS; Hahn LW; Moore JH
    BMC Bioinformatics; 2003 Jul; 4():28. PubMed ID: 12846935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the combination of genetic factors that determine susceptibility to cervical cancer.
    Horng JT; Hu KC; Wu LC; Huang HD; Lin FM; Huang SL; Lai HC; Chu TY
    IEEE Trans Inf Technol Biomed; 2004 Mar; 8(1):59-66. PubMed ID: 15055802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Parkinson's disease recognition based on statistical pooling method using acoustic features.
    Yaman O; Ertam F; Tuncer T
    Med Hypotheses; 2020 Feb; 135():109483. PubMed ID: 31954340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
    Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD
    Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A similarity-based method for genome-wide prediction of disease-relevant human genes.
    Freudenberg J; Propping P
    Bioinformatics; 2002; 18 Suppl 2():S110-5. PubMed ID: 12385992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.
    Statnikov A; Aliferis CF; Tsamardinos I; Hardin D; Levy S
    Bioinformatics; 2005 Mar; 21(5):631-43. PubMed ID: 15374862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GPDTI: a Genetic Programming Decision Tree induction method to find epistatic effects in common complex diseases.
    Estrada-Gil JK; Fernández-López JC; Hernández-Lemus E; Silva-Zolezzi I; Hidalgo-Miranda A; Jiménez-Sánchez G; Vallejo-Clemente EE
    Bioinformatics; 2007 Jul; 23(13):i167-74. PubMed ID: 17646293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact genetic linkage computations for general pedigrees.
    Fishelson M; Geiger D
    Bioinformatics; 2002; 18 Suppl 1():S189-98. PubMed ID: 12169547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering gene networks with a neural-genetic hybrid.
    Keedwell E; Narayanan A
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(3):231-42. PubMed ID: 17044186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2LD, GENECOUNTING and HAP: Computer programs for linkage disequilibrium analysis.
    Zhao JH
    Bioinformatics; 2004 May; 20(8):1325-6. PubMed ID: 14871868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-stage designs to identify the effects of SNP combinations on complex diseases.
    Kang G; Yue W; Zhang J; Huebner M; Zhang H; Ruan Y; Lu T; Ling Y; Zuo Y; Zhang D
    J Hum Genet; 2008; 53(8):739-746. PubMed ID: 18584117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RankGene: identification of diagnostic genes based on expression data.
    Su Y; Murali TM; Pavlovic V; Schaffer M; Kasif S
    Bioinformatics; 2003 Aug; 19(12):1578-9. PubMed ID: 12912841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity.
    Ritchie MD; Hahn LW; Moore JH
    Genet Epidemiol; 2003 Feb; 24(2):150-7. PubMed ID: 12548676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting freezing-of-gait during unscripted and unconstrained activity.
    Cole BT; Roy SH; Nawab SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5649-52. PubMed ID: 22255621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.