These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16436292)

  • 1. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.
    Oguz MT; Robinson KG; Layton AC; Sayler GS
    Water Res; 2006 Feb; 40(4):665-74. PubMed ID: 16436292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent nitrite oxidation and aerobic denitrification in activated sludge exposed to volatile fatty acids.
    Oguz MT; Robinson KG; Layton AC; Sayler GS
    Biotechnol Bioeng; 2007 Aug; 97(6):1562-72. PubMed ID: 17304559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater.
    Lemaire R; Marcelino M; Yuan Z
    Biotechnol Bioeng; 2008 Aug; 100(6):1228-36. PubMed ID: 18553405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of volatile fatty acids from an acid-phase digester for denitrification.
    Elefsiniotis P; Wareham DG; Smith MO
    J Biotechnol; 2004 Nov; 114(3):289-97. PubMed ID: 15522438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of denitrification by the ordinary heterotrophic organisms in an NDBEPR activated sludge system.
    Drysdale GD; Kasan HC; Bux F
    Water Sci Technol; 2001; 43(1):147-54. PubMed ID: 11379085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total nitrogen removal in a hybrid, membrane-aerated activated sludge process.
    Downing LS; Nerenberg R
    Water Res; 2008 Aug; 42(14):3697-708. PubMed ID: 18707749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of protozoan grazing on nitrification and the ammonia- and nitrite-oxidizing bacterial communities in activated sludge.
    Pogue AJ; Gilbride KA
    Can J Microbiol; 2007 May; 53(5):559-71. PubMed ID: 17668014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wet oxidation of domestic sludge and process integration: the Mineralis process.
    Lendormi T; Prévot C; Doppenberg F; Spérandio M; Debellefontaine H
    Water Sci Technol; 2001; 44(10):163-9. PubMed ID: 11794648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France).
    Cébron A; Garnier J
    Water Res; 2005 Dec; 39(20):4979-92. PubMed ID: 16303163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant.
    Ma Y; Peng Y; Wang S; Yuan Z; Wang X
    Water Res; 2009 Feb; 43(3):563-72. PubMed ID: 19136135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.
    Kalyuzhnyi S; Gladchenko M; Mulder A; Versprille B
    Water Res; 2006 Nov; 40(19):3637-45. PubMed ID: 16893559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics.
    Kim DJ; Kim SH
    Water Res; 2006 Mar; 40(5):887-94. PubMed ID: 16460781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge.
    Ma J; Yang Q; Wang S; Wang L; Takigawa A; Peng Y
    J Hazard Mater; 2010 Mar; 175(1-3):518-23. PubMed ID: 19910113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring off-gas O2/CO2 to predict nitrification performance in activated sludge processes.
    Leu SY; Libra JA; Stenstrom MK
    Water Res; 2010 Jun; 44(11):3434-44. PubMed ID: 20421124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation.
    Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R
    Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of primary sludge fermentation products on mass balance for biological treatment.
    Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth, maintenance and product formation of autotrophs in activated sludge: taking the nitrite-oxidizing bacteria as an example.
    Ni BJ; Fang F; Xie WM; Yu HQ
    Water Res; 2008 Oct; 42(16):4261-70. PubMed ID: 18771791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge.
    Hao X; Wang Q; Zhang X; Cao Y; van Mark Loosdrecht CM
    Water Res; 2009 Aug; 43(14):3604-12. PubMed ID: 19535123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.
    Morgan-Sagastume F; Nielsen JL; Nielsen PH
    FEMS Microbiol Ecol; 2008 Nov; 66(2):447-61. PubMed ID: 18811652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.