These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16436292)

  • 21. Effect of pH and nitrite concentration on nitrite oxidation rate.
    Jiménez E; Giménez JB; Ruano MV; Ferrer J; Serralta J
    Bioresour Technol; 2011 Oct; 102(19):8741-7. PubMed ID: 21843934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the effect of pharmaceuticals on bacterial nitrite oxidation.
    Dokianakis SN; Kornaros ME; Lyberatos G
    Water Sci Technol; 2004; 50(5):341-6. PubMed ID: 15497867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process.
    Kim YM; Lee DS; Park C; Park D; Park JM
    Water Res; 2011 Jan; 45(3):1267-79. PubMed ID: 21047665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on Oxygen Uptake Rate measurements.
    Jubany I; Lafuente J; Baeza JA; Carrera J
    Water Res; 2009 Jun; 43(11):2761-72. PubMed ID: 19371923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation.
    Vigneron V; Ponthieu M; Barina G; Audic JM; Duquennoi C; Mazéas L; Bernet N; Bouchez T
    Waste Manag; 2007; 27(6):778-91. PubMed ID: 16793252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rate of nitrate production during a two-stage nitrification batch reaction.
    Pratt S; Gapes D; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):81-7. PubMed ID: 15656299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autotrophic nitrite removal in the cathode of microbial fuel cells.
    Puig S; Serra M; Vilar-Sanz A; Cabré M; Bañeras L; Colprim J; Balaguer MD
    Bioresour Technol; 2011 Mar; 102(6):4462-7. PubMed ID: 21262566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen removal by co-occurring methane oxidation, denitrification, aerobic ammonium oxidation, and anammox.
    Waki M; Yasuda T; Yokoyama H; Hanajima D; Ogino A; Suzuki K; Yamagishi T; Suwa Y; Tanaka Y
    Appl Microbiol Biotechnol; 2009 Oct; 84(5):977-85. PubMed ID: 19603162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrite-oxidizing bacteria guild ecology associated with nitrification failure in a continuous-flow reactor.
    Knapp CW; Graham DW
    FEMS Microbiol Ecol; 2007 Nov; 62(2):195-201. PubMed ID: 17868364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.
    Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q
    Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N(2)O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method.
    Yang Q; Liu X; Peng C; Wang S; Sun H; Peng Y
    Environ Sci Technol; 2009 Dec; 43(24):9400-6. PubMed ID: 20000535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.
    Wang B; Peng Y; Guo Y; Wang S
    J Biosci Bioeng; 2016 Apr; 121(4):431-4. PubMed ID: 26475401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive control of the nitrate level in an activated sludge process.
    Ekman M; Samuelsson P; Carlsson B
    Water Sci Technol; 2003; 47(11):137-44. PubMed ID: 12906282
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen removal via nitrite in domestic wastewater treatment using combined salt inhibition and on-line process control.
    Ye L; Tang B; Zhao KF; Pijuan M; Peng YZ
    Water Sci Technol; 2009; 60(6):1633-9. PubMed ID: 19759466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular assessment of ammonia- and nitrite-oxidizing bacteria in full-scale activated sludge wastewater treatment plants.
    Robinson KG; Dionisi HM; Harms G; Layton AC; Gregory IR; Sayler GS
    Water Sci Technol; 2003; 48(8):119-26. PubMed ID: 14682578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. II. Ethanol.
    Mycielski R; Blaszczyk M; Jackowska A; Olkowska H
    Acta Microbiol Pol; 1983; 32(4):381-8. PubMed ID: 6202106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Excess nitrogen accumulation in activated sludge in sequencing batch reactor with a single-stage oxic process.
    Li XM; Wang DB; Yang Q; Zheng W; Cao JB; Yue X; Shen TT; Zeng GM; Deng JH
    Water Sci Technol; 2009; 59(3):573-82. PubMed ID: 19214013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment.
    Shanableh A; Jomaa S
    Water Sci Technol; 2001; 44(10):129-35. PubMed ID: 11794643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated sensor for the monitoring of aerobic and anoxic activated sludge activities in biological nitrogen removal plants.
    Sin G; Malisse K; Vanrolleghem PA
    Water Sci Technol; 2003; 47(2):141-8. PubMed ID: 12636073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.