These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 16436375)
1. Variable reactivity of an engineered cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects different chemical states of the thiol. Liu X; Alexander C; Serrano J; Borg E; Dawson DC J Biol Chem; 2006 Mar; 281(12):8275-85. PubMed ID: 16436375 [TBL] [Abstract][Full Text] [Related]
2. A possible role for intracellular GSH in spontaneous reaction of a cysteine (T338C) engineered into the Cystic Fibrosis Transmembrane Conductance Regulator. Liu X Biometals; 2008 Jun; 21(3):277-87. PubMed ID: 17849169 [TBL] [Abstract][Full Text] [Related]
3. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore. Serrano JR; Liu X; Borg ER; Alexander CS; Shaw CF; Dawson DC Biophys J; 2006 Sep; 91(5):1737-48. PubMed ID: 16766608 [TBL] [Abstract][Full Text] [Related]
4. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway. Liu X; Dawson DC Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307 [TBL] [Abstract][Full Text] [Related]
5. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. Zhang ZR; Song B; McCarty NA J Biol Chem; 2005 Dec; 280(51):41997-2003. PubMed ID: 16227620 [TBL] [Abstract][Full Text] [Related]
6. CFTR: a cysteine at position 338 in TM6 senses a positive electrostatic potential in the pore. Liu X; Zhang ZR; Fuller MD; Billingsley J; McCarty NA; Dawson DC Biophys J; 2004 Dec; 87(6):3826-41. PubMed ID: 15361410 [TBL] [Abstract][Full Text] [Related]
7. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. Smith SS; Liu X; Zhang ZR; Sun F; Kriewall TE; McCarty NA; Dawson DC J Gen Physiol; 2001 Oct; 118(4):407-31. PubMed ID: 11585852 [TBL] [Abstract][Full Text] [Related]
8. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Alexander C; Ivetac A; Liu X; Norimatsu Y; Serrano JR; Landstrom A; Sansom M; Dawson DC Biochemistry; 2009 Oct; 48(42):10078-88. PubMed ID: 19754156 [TBL] [Abstract][Full Text] [Related]
9. CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane. Liu X; Smith SS; Sun F; Dawson DC J Gen Physiol; 2001 Oct; 118(4):433-46. PubMed ID: 11585853 [TBL] [Abstract][Full Text] [Related]
10. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway. Zhang J; Hwang TC Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338 [TBL] [Abstract][Full Text] [Related]
11. Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating. Fu J; Kirk KL J Biol Chem; 2001 Sep; 276(38):35660-8. PubMed ID: 11468285 [TBL] [Abstract][Full Text] [Related]
12. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. El Hiani Y; Linsdell P J Biol Chem; 2010 Oct; 285(42):32126-40. PubMed ID: 20675380 [TBL] [Abstract][Full Text] [Related]
13. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment. Cheung M; Akabas MH Biophys J; 1996 Jun; 70(6):2688-95. PubMed ID: 8744306 [TBL] [Abstract][Full Text] [Related]
14. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation. Gao X; Bai Y; Hwang TC Biophys J; 2013 Feb; 104(4):786-97. PubMed ID: 23442957 [TBL] [Abstract][Full Text] [Related]
15. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Wang W; El Hiani Y; Linsdell P J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847 [TBL] [Abstract][Full Text] [Related]
16. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Akabas MH Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537 [TBL] [Abstract][Full Text] [Related]
17. Reversible silencing of CFTR chloride channels by glutathionylation. Wang W; Oliva C; Li G; Holmgren A; Lillig CH; Kirk KL J Gen Physiol; 2005 Feb; 125(2):127-41. PubMed ID: 15657297 [TBL] [Abstract][Full Text] [Related]
18. Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel. Negoda A; El Hiani Y; Cowley EA; Linsdell P Biochim Biophys Acta Biomembr; 2017 May; 1859(5):1049-1058. PubMed ID: 28235470 [TBL] [Abstract][Full Text] [Related]
19. Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. Zhang ZR; Cui G; Liu X; Song B; Dawson DC; McCarty NA J Biol Chem; 2005 Jan; 280(1):458-68. PubMed ID: 15504728 [TBL] [Abstract][Full Text] [Related]
20. Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization. Sun XZ; Vinci C; Makmura L; Han S; Tran D; Nguyen J; Hamann M; Grazziani S; Sheppard S; Gutova M; Zhou F; Thomas J; Momand J Antioxid Redox Signal; 2003 Oct; 5(5):655-65. PubMed ID: 14580323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]