These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Cysteine accessibility in ClC-0 supports conservation of the ClC intracellular vestibule. Engh AM; Maduke M J Gen Physiol; 2005 Jun; 125(6):601-17. PubMed ID: 15897295 [TBL] [Abstract][Full Text] [Related]
23. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186 [TBL] [Abstract][Full Text] [Related]
24. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895 [TBL] [Abstract][Full Text] [Related]
25. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator. Chen EY; Bartlett MC; Loo TW; Clarke DM J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010 [TBL] [Abstract][Full Text] [Related]
26. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. Cui L; Aleksandrov L; Hou YX; Gentzsch M; Chen JH; Riordan JR; Aleksandrov AA J Physiol; 2006 Apr; 572(Pt 2):347-58. PubMed ID: 16484308 [TBL] [Abstract][Full Text] [Related]
27. Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102. Weber GJ; Mehr AP; Sirota JC; Aller SG; Decker SE; Dawson DC; Forrest JN Am J Physiol Cell Physiol; 2006 Mar; 290(3):C793-801. PubMed ID: 16236827 [TBL] [Abstract][Full Text] [Related]
29. Interdomain but not intermolecular interactions observed in CFTR channels. Kembi F; Harrington MA Biochem Biophys Res Commun; 2001 Nov; 288(4):819-26. PubMed ID: 11688981 [TBL] [Abstract][Full Text] [Related]
30. State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore. Fatehi M; Linsdell P J Biol Chem; 2008 Mar; 283(10):6102-9. PubMed ID: 18167343 [TBL] [Abstract][Full Text] [Related]
31. Probing CFTR channel structure and function using the substituted-cysteine-accessibility method. Akabas MH Methods Mol Med; 2002; 70():159-74. PubMed ID: 11917520 [No Abstract] [Full Text] [Related]
32. The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. Peskin AV; Low FM; Paton LN; Maghzal GJ; Hampton MB; Winterbourn CC J Biol Chem; 2007 Apr; 282(16):11885-92. PubMed ID: 17329258 [TBL] [Abstract][Full Text] [Related]
33. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Nelson JW; Creighton TE Biochemistry; 1994 May; 33(19):5974-83. PubMed ID: 8180227 [TBL] [Abstract][Full Text] [Related]
34. Cystic fibrosis transmembrane conductance regulator: a molecular model defines the architecture of the anion conduction path and locates a "bottleneck" in the pore. Norimatsu Y; Ivetac A; Alexander C; Kirkham J; O'Donnell N; Dawson DC; Sansom MS Biochemistry; 2012 Mar; 51(11):2199-212. PubMed ID: 22352759 [TBL] [Abstract][Full Text] [Related]
35. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. Wang W; Linsdell P J Biol Chem; 2012 Sep; 287(38):32136-46. PubMed ID: 22843683 [TBL] [Abstract][Full Text] [Related]
36. Reverse Thiol Trapping Approach to Assess the Thiol Status of Metal-Binding Mitochondrial Proteins. Zhong H; Nyvltova E; Barrientos A Methods Mol Biol; 2024; 2839():249-259. PubMed ID: 39008259 [TBL] [Abstract][Full Text] [Related]
37. External Zn(2+) binding to cysteine-substituted cystic fibrosis transmembrane conductance regulator constructs regulates channel gating and curcumin potentiation. Wang G; Linsley R; Norimatsu Y FEBS J; 2016 Jul; 283(13):2458-75. PubMed ID: 27175795 [TBL] [Abstract][Full Text] [Related]
38. Cyclic Thiosulfinates and Cyclic Disulfides Selectively Cross-Link Thiols While Avoiding Modification of Lone Thiols. Donnelly DP; Dowgiallo MG; Salisbury JP; Aluri KC; Iyengar S; Chaudhari M; Mathew M; Miele I; Auclair JR; Lopez SA; Manetsch R; Agar JN J Am Chem Soc; 2018 Jun; 140(24):7377-7380. PubMed ID: 29851341 [TBL] [Abstract][Full Text] [Related]
39. Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. Kil IS; Park JW J Biol Chem; 2005 Mar; 280(11):10846-54. PubMed ID: 15653693 [TBL] [Abstract][Full Text] [Related]
40. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities. Xiao R; Lundström-Ljung J; Holmgren A; Gilbert HF J Biol Chem; 2005 Jun; 280(22):21099-106. PubMed ID: 15814611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]