These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16436375)

  • 41. Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge.
    Cotten JF; Welsh MJ
    J Biol Chem; 1999 Feb; 274(9):5429-35. PubMed ID: 10026154
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
    Le Moan N; Clement G; Le Maout S; Tacnet F; Toledano MB
    J Biol Chem; 2006 Apr; 281(15):10420-30. PubMed ID: 16418165
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Localization of the pH gate in Kir1.1 channels.
    Zhang YY; Sackin H; Palmer LG
    Biophys J; 2006 Oct; 91(8):2901-9. PubMed ID: 16891366
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The oxidation of yeast alcohol dehydrogenase-1 by hydrogen peroxide in vitro.
    Men L; Wang Y
    J Proteome Res; 2007 Jan; 6(1):216-25. PubMed ID: 17203966
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN; Linsdell P
    J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of outer mouth mutations on hERG channel function: a comparison with similar mutations in the Shaker channel.
    Fan JS; Jiang M; Dun W; McDonald TV; Tseng GN
    Biophys J; 1999 Jun; 76(6):3128-40. PubMed ID: 10354437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thiol-reactive compounds from garlic inhibit the epithelial sodium channel (ENaC).
    Krumm P; Giraldez T; Alvarez de la Rosa D; Clauss WG; Fronius M; Althaus M
    Bioorg Med Chem; 2012 Jul; 20(13):3979-84. PubMed ID: 22668601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore.
    Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Up-regulation of acid-gated Na(+) channels (ASICs) by cystic fibrosis transmembrane conductance regulator co-expression in Xenopus oocytes.
    Ji HL; Jovov B; Fu J; Bishop LR; Mebane HC; Fuller CM; Stanton BA; Benos DJ
    J Biol Chem; 2002 Mar; 277(10):8395-405. PubMed ID: 11748227
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes.
    Suaud L; Carattino M; Kleyman TR; Rubenstein RC
    J Biol Chem; 2002 Dec; 277(52):50341-7. PubMed ID: 12386156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cystic fibrosis transmembrane conductance regulator activates water conductance in Xenopus oocytes.
    Schreiber R; Greger R; Nitschke R; Kunzelmann K
    Pflugers Arch; 1997 Nov; 434(6):841-7. PubMed ID: 9306020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore.
    Mansoura MK; Smith SS; Choi AD; Richards NW; Strong TV; Drumm ML; Collins FS; Dawson DC
    Biophys J; 1998 Mar; 74(3):1320-32. PubMed ID: 9512029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thiol-induced discharge of acontial nematocytes.
    La Spada G; Sorrenti G; Soffli A; Montaleone B; Marino A; Musci G
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Jun; 132(2):367-73. PubMed ID: 12031462
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The reactivity of thiol compounds with different redox states of leghaemoglobin: evidence for competing reduction and addition pathways.
    Puppo A; Davies MJ
    Biochim Biophys Acta; 1995 Jan; 1246(1):74-81. PubMed ID: 7811734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cysteine mutagenesis and computer modeling of the S6 region of an intermediate conductance IKCa channel.
    Simoes M; Garneau L; Klein H; Banderali U; Hobeila F; Roux B; Parent L; Sauvé R
    J Gen Physiol; 2002 Jul; 120(1):99-116. PubMed ID: 12084779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modulation of the reactivity of the essential cysteine residue of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
    González-Segura L; Velasco-García R; Muñoz-Clares RA
    Biochem J; 2002 Feb; 361(Pt 3):577-85. PubMed ID: 11802787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction between 2 extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel.
    Broadbent SD; Wang W; Linsdell P
    Biochem Cell Biol; 2014 Oct; 92(5):390-6. PubMed ID: 25253636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function.
    Pasyk EA; Morin XK; Zeman P; Garami E; Galley K; Huan LJ; Wang Y; Bear CE
    J Biol Chem; 1998 Nov; 273(48):31759-64. PubMed ID: 9822639
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure.
    Linsdell P
    Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.