BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 16436479)

  • 1. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
    Jensen RJ; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):367-73. PubMed ID: 16616739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
    Fried SI; Hsueh HA; Werblin FS
    J Neurophysiol; 2006 Feb; 95(2):970-8. PubMed ID: 16236780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2011 Jun; 8(3):035004. PubMed ID: 21593545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
    Jensen RJ
    Exp Eye Res; 2012 Jun; 99():71-7. PubMed ID: 22542904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective electrode configuration for selective stimulation with inner eye prostheses.
    Rattay F; Resatz S
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1659-64. PubMed ID: 15376514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation in isolated rabbit retina.
    Shyu JS; Maia M; Weiland JD; Ohearn T; Chen SJ; Margalit E; Suzuki S; Humayun MS
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):290-8. PubMed ID: 17009488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal aspects of pulsed electrical stimuli on the responses of rabbit retinal ganglion cells.
    Jensen RJ; Ziv OR; Rizzo JF; Scribner D; Johnson L
    Exp Eye Res; 2009 Dec; 89(6):972-9. PubMed ID: 19766116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode.
    Jensen RJ; Ziv OR; Rizzo JF
    J Neural Eng; 2005 Mar; 2(1):S16-21. PubMed ID: 15876650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preparation for studying electrical stimulation of the retina in vivo in rat.
    Baig-Silva MS; Hathcock CD; Hetling JR
    J Neural Eng; 2005 Mar; 2(1):S29-38. PubMed ID: 15876652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes.
    Jensen RJ; Ziv OR; Rizzo JF
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1486-96. PubMed ID: 15790920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sites of neuronal excitation by epiretinal electrical stimulation.
    Schiefer MA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):5-13. PubMed ID: 16562626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical stimulation of retinal neurons in epiretinal and subretinal configuration using a multicapacitor array.
    Eickenscheidt M; Jenkner M; Thewes R; Fromherz P; Zeck G
    J Neurophysiol; 2012 May; 107(10):2742-55. PubMed ID: 22357789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of high-level pulse train stimulation on retinal function.
    Cohen ED
    J Neural Eng; 2009 Jun; 6(3):035005. PubMed ID: 19458404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model retinal interface based on directed neuronal growth for single cell stimulation.
    Mehenti NZ; Tsien GS; Leng T; Fishman HA; Bent SF
    Biomed Microdevices; 2006 Jun; 8(2):141-50. PubMed ID: 16688573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.