These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16436601)

  • 21. Elementary response triggered by transducin in retinal rods.
    Yue WWS; Silverman D; Ren X; Frederiksen R; Sakai K; Yamashita T; Shichida Y; Cornwall MC; Chen J; Yau KW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5144-5153. PubMed ID: 30796193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arrestin mutations: Some cause diseases, others promise cure.
    Gurevich VV; Gurevich EV
    Prog Mol Biol Transl Sci; 2019; 161():29-45. PubMed ID: 30711028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Mutant Compensates for Defects in Rhodopsin Phosphorylation in the Presence of Endogenous Arrestin-1.
    Samaranayake S; Song X; Vishnivetskiy SA; Chen J; Gurevich EV; Gurevich VV
    Front Mol Neurosci; 2018; 11():203. PubMed ID: 29973866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GPCRs and Signal Transducers: Interaction Stoichiometry.
    Gurevich VV; Gurevich EV
    Trends Pharmacol Sci; 2018 Jul; 39(7):672-684. PubMed ID: 29739625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Defects of the Disease-Causing Human Arrestin-1 C147F Mutant.
    Vishnivetskiy SA; Sullivan LS; Bowne SJ; Daiger SP; Gurevich EV; Gurevich VV
    Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):13-20. PubMed ID: 29305604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States.
    Sullivan LS; Bowne SJ; Koboldt DC; Cadena EL; Heckenlively JR; Branham KE; Wheaton DH; Jones KD; Ruiz RS; Pennesi ME; Yang P; Davis-Boozer D; Northrup H; Gurevich VV; Chen R; Xu M; Li Y; Birch DG; Daiger SP
    Invest Ophthalmol Vis Sci; 2017 May; 58(5):2774-2784. PubMed ID: 28549094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of photoreceptor cell compartments in mouse retina for protein analysis.
    Rose K; Walston ST; Chen J
    Mol Neurodegener; 2017 Apr; 12(1):28. PubMed ID: 28399904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.
    Frederiksen R; Nymark S; Kolesnikov AV; Berry JD; Adler L; Koutalos Y; Kefalov VJ; Cornwall MC
    J Gen Physiol; 2016 Jul; 148(1):1-11. PubMed ID: 27353443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoreceptors at a glance.
    Molday RS; Moritz OL
    J Cell Sci; 2015 Nov; 128(22):4039-45. PubMed ID: 26574505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arrestins: Critical Players in Trafficking of Many GPCRs.
    Gurevich VV; Gurevich EV
    Prog Mol Biol Transl Sci; 2015; 132():1-14. PubMed ID: 26055052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of receptor binding-induced conformational changes in non-visual arrestins.
    Zhuo Y; Vishnivetskiy SA; Zhan X; Gurevich VV; Klug CS
    J Biol Chem; 2014 Jul; 289(30):20991-1002. PubMed ID: 24867953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circadian and noncircadian modulation of autophagy in photoreceptors and retinal pigment epithelium.
    Yao J; Jia L; Shelby SJ; Ganios AM; Feathers K; Thompson DA; Zacks DN
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3237-46. PubMed ID: 24781939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-association of arrestin family members.
    Chen Q; Zhuo Y; Kim M; Hanson SM; Francis DJ; Vishnivetskiy SA; Altenbach C; Klug CS; Hubbell WL; Gurevich VV
    Handb Exp Pharmacol; 2014; 219():205-23. PubMed ID: 24292832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced phosphorylation-independent arrestins and gene therapy.
    Gurevich VV; Song X; Vishnivetskiy SA; Gurevich EV
    Handb Exp Pharmacol; 2014; 219():133-52. PubMed ID: 24292828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant.
    Song X; Seo J; Baameur F; Vishnivetskiy SA; Chen Q; Kook S; Kim M; Brooks EK; Altenbach C; Hong Y; Hanson SM; Palazzo MC; Chen J; Hubbell WL; Gurevich EV; Gurevich VV
    Cell Signal; 2013 Dec; 25(12):2613-24. PubMed ID: 24012956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases.
    Zhan X; Kaoud TS; Kook S; Dalby KN; Gurevich VV
    J Biol Chem; 2013 Oct; 288(40):28535-47. PubMed ID: 23960075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light-dependent phosphorylation of Bardet-Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1.
    Smith TS; Spitzbarth B; Li J; Dugger DR; Stern-Schneider G; Sehn E; Bolch SN; McDowell JH; Tipton J; Wolfrum U; Smith WC
    Cell Mol Life Sci; 2013 Dec; 70(23):4603-16. PubMed ID: 23817741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural determinants of arrestin functions.
    Gurevich VV; Gurevich EV
    Prog Mol Biol Transl Sci; 2013; 118():57-92. PubMed ID: 23764050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.