These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16436604)

  • 1. Long-lasting memories of obstacles guide leg movements in the walking cat.
    McVea DA; Pearson KG
    J Neurosci; 2006 Jan; 26(4):1175-8. PubMed ID: 16436604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hind limb stepping over obstacles in the horse guided by place-object memory.
    Whishaw IQ; Sacrey LA; Gorny B
    Behav Brain Res; 2009 Mar; 198(2):372-9. PubMed ID: 19071161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-lasting working memories of obstacles established by foreleg stepping in walking cats require area 5 of the posterior parietal cortex.
    McVea DA; Taylor AJ; Pearson KG
    J Neurosci; 2009 Jul; 29(29):9396-404. PubMed ID: 19625530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Memory-Guided Stumbling Correction in the Hindlimb of Quadrupeds Relies on Parietal Area 5.
    Wong C; Wong G; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Feb; 28(2):561-573. PubMed ID: 28013232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Object avoidance during locomotion.
    McVea DA; Pearson KG
    Adv Exp Med Biol; 2009; 629():293-315. PubMed ID: 19227506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Updating neural representations of objects during walking.
    Pearson K; Gramlich R
    Ann N Y Acad Sci; 2010 Jun; 1198():1-9. PubMed ID: 20536915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable Delay Period Representations in the Posterior Parietal Cortex Facilitate Working-Memory-Guided Obstacle Negotiation.
    Wong C; Lomber SG
    Curr Biol; 2019 Jan; 29(1):70-80.e3. PubMed ID: 30581021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepping of the forelegs over obstacles establishes long-lasting memories in cats.
    McVea DA; Pearson KG
    Curr Biol; 2007 Aug; 17(16):R621-3. PubMed ID: 17714644
    [No Abstract]   [Full Text] [Related]  

  • 9. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory.
    Lajoie K; Andujar JE; Pearson K; Drew T
    J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Cooling-induced Deactivations to Study Cortical Contributions to Obstacle Memory in the Walking Cat.
    Wong C; Lomber SG
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinematic and kinetic analysis of locomotion during voluntary gait modification in the cat.
    Lavoie S; McFadyen B; Drew T
    Exp Brain Res; 1995; 106(1):39-56. PubMed ID: 8542976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of Parietal Cortex to the Working Memory of an Obstacle Acquired Visually or Tactilely in the Locomoting Cat.
    Wong C; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Sep; 28(9):3143-3158. PubMed ID: 28981640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and energetic patterns for hindlimb obstacle avoidance during cat locomotion.
    McFadyen BJ; Lavoie S; Drew T
    Exp Brain Res; 1999 Apr; 125(4):502-10. PubMed ID: 10323297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for obstacle avoidance during walking in the cat.
    Chu KMI; Seto SH; Beloozerova IN; Marlinski V
    J Neurophysiol; 2017 Aug; 118(2):817-831. PubMed ID: 28356468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forelimb and hindlimb ground reaction forces of walking cats: assessment and comparison with walking dogs.
    Corbee RJ; Maas H; Doornenbal A; Hazewinkel HA
    Vet J; 2014 Oct; 202(1):116-27. PubMed ID: 25155217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses.
    McVea DA; Pearson KG
    J Neurophysiol; 2007 Jan; 97(1):659-69. PubMed ID: 17108090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contextual learning and obstacle memory in the walking cat.
    McVea DA; Pearson KG
    Integr Comp Biol; 2007 Oct; 47(4):457-64. PubMed ID: 21672854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg mechanics contribute to establishing swing phase trajectories during memory-guided stepping movements in walking cats: a computational analysis.
    Pearson KG; Arbabzada N; Gramlich R; Shinya M
    Front Comput Neurosci; 2015; 9():116. PubMed ID: 26441625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):184-95. PubMed ID: 3746394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous control of two rhythmical behaviors. I. Locomotion with paw-shake response in normal cat.
    Carter MC; Smith JL
    J Neurophysiol; 1986 Jul; 56(1):171-83. PubMed ID: 3746393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.