These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16436604)

  • 21. Characteristics of leading forelimb movements for obstacle avoidance during locomotion in rats.
    Aoki S; Sato Y; Yanagihara D
    Neurosci Res; 2012 Oct; 74(2):129-37. PubMed ID: 22902354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat.
    Farrell BJ; Bulgakova MA; Sirota MG; Prilutsky BI; Beloozerova IN
    J Neurophysiol; 2015 Nov; 114(5):2682-702. PubMed ID: 26354314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordination of fore and hind leg stepping in cats on a transversely-split treadmill.
    Akay T; McVea DA; Tachibana A; Pearson KG
    Exp Brain Res; 2006 Nov; 175(2):211-22. PubMed ID: 16733696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. System identification of muscle-joint interactions of the cat hind limb during locomotion.
    Harischandra N; Ekeberg O
    Biol Cybern; 2008 Aug; 99(2):125-38. PubMed ID: 18648849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lesion in the lateral cerebellum specifically produces overshooting of the toe trajectory in leading forelimb during obstacle avoidance in the rat.
    Aoki S; Sato Y; Yanagihara D
    J Neurophysiol; 2013 Oct; 110(7):1511-24. PubMed ID: 23615542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distraction affects the performance of obstacle avoidance during walking.
    Weerdesteyn V; Schillings AM; van Galen GP; Duysens J
    J Mot Behav; 2003 Mar; 35(1):53-63. PubMed ID: 12724099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual control of foot placement when walking over complex terrain.
    Matthis JS; Fajen BR
    J Exp Psychol Hum Percept Perform; 2014 Feb; 40(1):106-15. PubMed ID: 23750964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determinants guiding alternate foot placement selection and the behavioral responses are similar when avoiding a real or a virtual obstacle.
    Moraes R; Patla AE
    Exp Brain Res; 2006 Jun; 171(4):497-510. PubMed ID: 16369789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordination of movements of the kindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats.
    Miller S; Van Der Burg J; Van Der Meché F
    Brain Res; 1975 Jun; 91(2):217-37. PubMed ID: 1164672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
    Ekeberg O; Pearson K
    J Neurophysiol; 2005 Dec; 94(6):4256-68. PubMed ID: 16049149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Age-related and obstacle height-related differences in movements while stepping over obstacles.
    Shin S; Demura S; Watanabe T; Yabumoto T; Shi B; Sakakibara N; Matsuoka T
    J Physiol Anthropol; 2015 Mar; 34(1):15. PubMed ID: 25858809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.
    Garnier C; Falempin M; Canu MH
    Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stepping over obstacles: attention demands and aging.
    Harley C; Wilkie RM; Wann JP
    Gait Posture; 2009 Apr; 29(3):428-32. PubMed ID: 19084412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unrestrained walking in intact cats.
    Górska T; Bem T; Majczyński H; Zmysłowski W
    Brain Res Bull; 1993; 32(3):235-40. PubMed ID: 8374802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.
    Schlesiger MI; Cressey JC; Boublil B; Koenig J; Melvin NR; Leutgeb JK; Leutgeb S
    Neurobiol Learn Mem; 2013 Nov; 106():324-33. PubMed ID: 23742919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive control for backward quadrupedal walking. I. Posture and hindlimb kinematics.
    Buford JA; Zernicke RF; Smith JL
    J Neurophysiol; 1990 Sep; 64(3):745-55. PubMed ID: 2230921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unrestrained walking in cats with partial spinal lesions.
    Górska T; Bem T; Majczyński H; Zmysłowski W
    Brain Res Bull; 1993; 32(3):241-9. PubMed ID: 8374803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of target-reaching in cats. III. Lifting and protraction with an obstacle in the movement path and after its removal.
    Perfiliev S; Pettersson LG
    Exp Brain Res; 1998 Jun; 120(4):510-8. PubMed ID: 9655237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.