These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 16436656)
1. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Fickert P; Fuchsbichler A; Marschall HU; Wagner M; Zollner G; Krause R; Zatloukal K; Jaeschke H; Denk H; Trauner M Am J Pathol; 2006 Feb; 168(2):410-22. PubMed ID: 16436656 [TBL] [Abstract][Full Text] [Related]
2. Minimal role of hepatic transporters in the hepatoprotection against LCA-induced intrahepatic cholestasis. Beilke LD; Besselsen DG; Cheng Q; Kulkarni S; Slitt AL; Cherrington NJ Toxicol Sci; 2008 Mar; 102(1):196-204. PubMed ID: 18032408 [TBL] [Abstract][Full Text] [Related]
3. Sustained repression and translocation of Ntcp and expression of Mrp4 for cholestasis after rat 90% partial hepatectomy. Miura T; Kimura N; Yamada T; Shimizu T; Nanashima N; Yamana D; Hakamada K; Tsuchida S J Hepatol; 2011 Aug; 55(2):407-14. PubMed ID: 21167233 [TBL] [Abstract][Full Text] [Related]
4. Differential expression of bile salt and organic anion transporters in developing rat liver. Gao B; St Pierre MV; Stieger B; Meier PJ J Hepatol; 2004 Aug; 41(2):201-8. PubMed ID: 15288467 [TBL] [Abstract][Full Text] [Related]
5. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Fickert P; Stöger U; Fuchsbichler A; Moustafa T; Marschall HU; Weiglein AH; Tsybrovskyy O; Jaeschke H; Zatloukal K; Denk H; Trauner M Am J Pathol; 2007 Aug; 171(2):525-36. PubMed ID: 17600122 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. Baghdasaryan A; Fuchs CD; Österreicher CH; Lemberger UJ; Halilbasic E; Påhlman I; Graffner H; Krones E; Fickert P; Wahlström A; Ståhlman M; Paumgartner G; Marschall HU; Trauner M J Hepatol; 2016 Mar; 64(3):674-81. PubMed ID: 26529078 [TBL] [Abstract][Full Text] [Related]
7. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Chen P; Zeng H; Wang Y; Fan X; Xu C; Deng R; Zhou X; Bi H; Huang M Drug Metab Dispos; 2014 May; 42(5):844-52. PubMed ID: 24510383 [TBL] [Abstract][Full Text] [Related]
8. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Lee JM; Trauner M; Soroka CJ; Stieger B; Meier PJ; Boyer JL Gastroenterology; 2000 Jan; 118(1):163-72. PubMed ID: 10611165 [TBL] [Abstract][Full Text] [Related]
9. Expression and role of the genes involved in the transport of bile acids in the liver and kidneys in mice. Attakpa ES; Djibril NM; Baba-Moussa F; Yessoufou G; Sezan A J Basic Clin Physiol Pharmacol; 2013; 24(2):97-103. PubMed ID: 23423529 [TBL] [Abstract][Full Text] [Related]
10. The role of lithocholic acid in the regulation of bile acid detoxication, synthesis, and transport proteins in rat and human intestine and liver slices. Khan AA; Chow EC; Porte RJ; Pang KS; Groothuis GM Toxicol In Vitro; 2011 Feb; 25(1):80-90. PubMed ID: 20888898 [TBL] [Abstract][Full Text] [Related]
11. Effect of Ursodeoxycholic Acid on the Expression of the Hepatocellular Bile Acid Transporters (Ntcp and bsep) in Rats With Estrogen-Induced Cholestasis. Micheline D; Emmanuel J; Serge E J Pediatr Gastroenterol Nutr; 2002 Aug; 35(2):185-91. PubMed ID: 12187295 [TBL] [Abstract][Full Text] [Related]
12. Optimized Hepatocyte-Like Cells with Functional Drug Transporters Directly-Reprogrammed from Mouse Fibroblasts and their Potential in Drug Disposition and Toxicology. Wu ZT; Yao D; Ji SY; Ni X; Gao YM; Hui LJ; Pan GY Cell Physiol Biochem; 2016; 38(5):1815-30. PubMed ID: 27160211 [TBL] [Abstract][Full Text] [Related]
13. Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice. Woolbright BL; Li F; Xie Y; Farhood A; Fickert P; Trauner M; Jaeschke H Toxicol Lett; 2014 Jul; 228(1):56-66. PubMed ID: 24742700 [TBL] [Abstract][Full Text] [Related]
14. Hepatobiliary transporters in drug-induced cholestasis: a perspective on the current identifying tools. de Lima Toccafondo Vieira M; Tagliati CA Expert Opin Drug Metab Toxicol; 2014 Apr; 10(4):581-97. PubMed ID: 24588537 [TBL] [Abstract][Full Text] [Related]
15. Protective Effects of Alisol B 23-Acetate Via Farnesoid X Receptor-Mediated Regulation of Transporters and Enzymes in Estrogen-Induced Cholestatic Liver Injury in Mice. Meng Q; Chen X; Wang C; Liu Q; Sun H; Sun P; Huo X; Liu Z; Yao J; Liu K Pharm Res; 2015 Nov; 32(11):3688-98. PubMed ID: 26040663 [TBL] [Abstract][Full Text] [Related]
17. Effects of bile salt flux variations on the expression of hepatic bile salt transporters in vivo in mice. Wolters H; Elzinga BM; Baller JF; Boverhof R; Schwarz M; Stieger B; Verkade HJ; Kuipers F J Hepatol; 2002 Nov; 37(5):556-63. PubMed ID: 12399219 [TBL] [Abstract][Full Text] [Related]
18. The impact of resuscitated fecal peritonitis on the expression of the hepatic bile salt transporters in a porcine model. Wauters J; Mesotten D; Van Zwam K; van Pelt J; Thiessen S; Dieudonné AS; Vander Borght S; Van den Berghe G; Wilmer A Shock; 2010 Nov; 34(5):508-16. PubMed ID: 20357697 [TBL] [Abstract][Full Text] [Related]
19. Protective role of hydroxysteroid sulfotransferase in lithocholic acid-induced liver toxicity. Kitada H; Miyata M; Nakamura T; Tozawa A; Honma W; Shimada M; Nagata K; Sinal CJ; Guo GL; Gonzalez FJ; Yamazoe Y J Biol Chem; 2003 May; 278(20):17838-44. PubMed ID: 12637555 [TBL] [Abstract][Full Text] [Related]
20. Regulation of rat organic anion transporters in bile salt-induced cholestatic hepatitis: effect of ursodeoxycholate. Rost D; Herrmann T; Sauer P; Schmidts HL; Stieger B; Meier PJ; Stremmel W; Stiehl A Hepatology; 2003 Jul; 38(1):187-95. PubMed ID: 12830001 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]