These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 16437223)

  • 1. Regulation and modulation of electric waveforms in gymnotiform electric fish.
    Stoddard PK; Zakon HH; Markham MR; McAnelly L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):613-24. PubMed ID: 16437223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells.
    Markham MR; Stoddard PK
    J Neurosci; 2005 Sep; 25(38):8746-54. PubMed ID: 16177044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular mechanisms of developmental and sex differences in the rapid hormonal modulation of a social communication signal.
    Markham MR; Stoddard PK
    Horm Behav; 2013 Apr; 63(4):586-97. PubMed ID: 23434622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian and social cues regulate ion channel trafficking.
    Markham MR; McAnelly ML; Stoddard PK; Zakon HH
    PLoS Biol; 2009 Sep; 7(9):e1000203. PubMed ID: 19787026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude.
    Markham MR; Kaczmarek LK; Zakon HH
    J Neurophysiol; 2013 Apr; 109(7):1713-23. PubMed ID: 23324315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae).
    Petzold JM; Marsat G; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testosterone and 11-ketotestosterone have different regulatory effects on electric communication signals of male Brachyhypopomus gauderio.
    Goldina A; Gavassa S; Stoddard PK
    Horm Behav; 2011 Jul; 60(2):139-47. PubMed ID: 21596047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Social competition affects electric signal plasticity and steroid levels in the gymnotiform fish Brachyhypopomus gauderio.
    Salazar VL; Stoddard PK
    Horm Behav; 2009 Oct; 56(4):399-409. PubMed ID: 19647742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derived loss of signal complexity and plasticity in a genus of weakly electric fish.
    Saenz DE; Gu T; Ban Y; Winemiller KO; Markham MR
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34109419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgens enhance plasticity of an electric communication signal in female knifefish, Brachyhypopomus pinnicaudatus.
    Allee SJ; Markham MR; Stoddard PK
    Horm Behav; 2009 Aug; 56(2):264-73. PubMed ID: 19450600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).
    Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT
    J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex differences in and hormonal regulation of Kv1 potassium channel gene expression in the electric organ: molecular control of a social signal.
    Few WP; Zakon HH
    Dev Neurobiol; 2007 Apr; 67(5):535-49. PubMed ID: 17443807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin modulates the electric waveform of the gymnotiform electric fish Brachyhypopomus pinnicaudatus.
    Stoddard PK; Markham MR; Salazar VL
    J Exp Biol; 2003 Apr; 206(Pt 8):1353-62. PubMed ID: 12624170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythms in electric waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus.
    Stoddard PK; Markham MR; Salazar VL; Allee S
    Physiol Behav; 2007 Jan; 90(1):11-20. PubMed ID: 16996093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for studying the energetics of sustained high frequency firing.
    Joos B; Markham MR; Lewis JE; Morris CE
    PLoS One; 2018; 13(4):e0196508. PubMed ID: 29708986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in energetic costs explain sexual dimorphism in the circadian rhythm modulation of the electrocommunication signal of the gymnotiform fish Brachyhypopomus pinnicaudatus.
    Salazar VL; Stoddard PK
    J Exp Biol; 2008 Mar; 211(Pt 6):1012-20. PubMed ID: 18310126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanocortins regulate the electric waveforms of gymnotiform electric fish.
    Markham MR; Allee SJ; Goldina A; Stoddard PK
    Horm Behav; 2009 Feb; 55(2):306-13. PubMed ID: 19063894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.