BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16438242)

  • 1. Design and simulation of a pneumatic, stored-energy, hybrid orthosis for gait restoration.
    Durfee WK; Rivard A
    J Biomech Eng; 2005 Nov; 127(6):1014-9. PubMed ID: 16438242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of body weight support gait training system using antagonistic bi-articular muscle model.
    Shibata Y; Imai S; Nobutomo T; Miyoshi T; Yamamoto S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4468-71. PubMed ID: 21095773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Optimization of FES and Orthosis-Based Walking Using Simple Models.
    Sharma N; Mushahwar V; Stein R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):114-26. PubMed ID: 24122568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking with WALK! A cooperative, patient-driven neuroprosthetic system.
    Fuhr T; Quintern J; Riener R; Schmidt G
    IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049
    [No Abstract]   [Full Text] [Related]  

  • 6. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training.
    Dohring ME; Daly JJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):310-3. PubMed ID: 18586610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of a robotic walking simulator for gait rehabilitation].
    Schmidt H; Sorowka D; Hesse S; Bernhardt R
    Biomed Tech (Berl); 2003 Oct; 48(10):281-6. PubMed ID: 14606269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and implementation of robust controllers for a gait trainer.
    Wang FC; Yu CH; Chou TY
    Proc Inst Mech Eng H; 2009 Aug; 223(6):687-96. PubMed ID: 19743635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer control of a powered two degree freedom reciprocating gait orthosis.
    Nouri BM; Zaidan A
    ISA Trans; 2006 Apr; 45(2):249-58. PubMed ID: 16649569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single channel hybrid FES gait system using an energy storing orthosis: preliminary design.
    Kangude A; Burgstahler B; Kakastys J; Durfee W
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6798-801. PubMed ID: 19964712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait.
    Goldfarb M; Korkowski K; Harrold B; Durfee W
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):241-8. PubMed ID: 14518787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A system to integrate electrical stimulation with robotically controlled treadmill training to rehabilitate stepping after spinal cord injury.
    Chao T; Askari S; De Leon R; Won D
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):730-7. PubMed ID: 22692941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering evaluation of the energy-storing orthosis FES gait system.
    Kangude A; Burgstahler B; Durfee W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5927-30. PubMed ID: 21096941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of hybrid exoskeletons to restore gait following spinal cord injury.
    del-Ama AJ; Koutsou AD; Moreno JC; de-los-Reyes A; Gil-Agudo A; Pons JL
    J Rehabil Res Dev; 2012; 49(4):497-514. PubMed ID: 22773254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal trajectory planning for a constrained functional electrical stimulation-based human walking.
    Sharma N; Stein R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():603-7. PubMed ID: 22254382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive impedance control of a robotic orthosis for gait rehabilitation.
    Hussain S; Xie SQ; Jamwal PK
    IEEE Trans Cybern; 2013 Jun; 43(3):1025-34. PubMed ID: 23193241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.