These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 16438244)

  • 1. A continuous loading apparatus for measuring three-dimensional stiffness of ankle-foot orthoses.
    Cappa P; Patanè F; Di Rosa G
    J Biomech Eng; 2005 Nov; 127(6):1025-9. PubMed ID: 16438244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of stiffness reduction in varying curvature ankle foot orthoses.
    Braund M; Kroontje D; Brooks J; Self B; Aaron G; Bearden K
    Biomed Sci Instrum; 2005; 41():19-24. PubMed ID: 15850076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel device to evaluate the stiffness of ankle-foot orthosis devices.
    Cappa P; Patanè F; Pierro MM
    J Biomech Eng; 2003 Dec; 125(6):913-7. PubMed ID: 14986419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stiffness control in posterior-type plastic ankle-foot orthoses: effect of ankle trimline. Part 2: Orthosis characteristics and orthosis/patient matching.
    Sumiya T; Suzuki Y; Kasahara T
    Prosthet Orthot Int; 1996 Aug; 20(2):132-7. PubMed ID: 8876008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three centre study of the variability of ankle foot orthoses due to fabrication and grade of polypropylene.
    Convery P; Greig RJ; Ross RS; Sockalingam S
    Prosthet Orthot Int; 2004 Aug; 28(2):175-82. PubMed ID: 15382811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle-foot-orthoses.
    Schmalz T; Blumentritt S; Drewitz H; Freslier M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):631-9. PubMed ID: 16567026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test apparatus for the measurement of the flexibility of ankle-foot orthoses in planes other than the loaded plane.
    Klasson B; Convery P; Raschke S
    Prosthet Orthot Int; 1998 Apr; 22(1):45-53. PubMed ID: 9604275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness control in posterior-type plastic ankle-foot orthoses: effect of ankle trimline. Part 1: A device for measuring ankle moment.
    Sumiya T; Suzuki Y; Kasahara T
    Prosthet Orthot Int; 1996 Aug; 20(2):129-31. PubMed ID: 8876007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instantaneous centers of rotation in dorsi/plantar flexion movements of posterior-type plastic ankle-foot orthoses.
    Sumiya T; Suzuki Y; Kasahara T; Ogata H
    J Rehabil Res Dev; 1997 Jul; 34(3):279-85. PubMed ID: 9239620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a method for fabricating polypropylene non-articulated dorsiflexion assist ankle foot orthoses with predetermined stiffness.
    Ramsey JA
    Prosthet Orthot Int; 2011 Mar; 35(1):54-69. PubMed ID: 21515890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.
    Blaya JA; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):24-31. PubMed ID: 15068184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the non-linear behaviour of plastic ankle foot orthoses by the finite element method.
    Syngellakis S; Arnold MA; Rassoulian H
    Proc Inst Mech Eng H; 2000; 214(5):527-39. PubMed ID: 11109861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacture of Passive Dynamic ankle-foot orthoses using selective laser sintering.
    Faustini MC; Neptune RR; Crawford RH; Stanhope SJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):784-90. PubMed ID: 18270017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of loads carried by polypropylene ankle-foot orthoses: a preliminary study.
    Papi E; Maclean J; Bowers RJ; Solomonidis SE
    Proc Inst Mech Eng H; 2015 Jan; 229(1):40-51. PubMed ID: 25655954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of mechanical properties between different percentage layups of a single-style carbon fibre ankle foot orthosis.
    Sheehan C; Figgins E
    Prosthet Orthot Int; 2017 Aug; 41(4):364-372. PubMed ID: 27365333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force in the achilles tendon during walking with ankle foot orthosis.
    Fröberg A; Komi P; Ishikawa M; Movin T; Arndt A
    Am J Sports Med; 2009 Jun; 37(6):1200-7. PubMed ID: 19229043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of gait with solid, dynamic, and no ankle-foot orthoses in children with spastic cerebral palsy.
    Radtka SA; Skinner SR; Dixon DM; Johanson ME
    Phys Ther; 1997 Apr; 77(4):395-409. PubMed ID: 9105342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ankle orientation on heel loading and knee stability for post-stroke individuals wearing ankle-foot orthoses.
    Silver-Thorn B; Herrmann A; Current T; McGuire J
    Prosthet Orthot Int; 2011 Jun; 35(2):150-62. PubMed ID: 21515899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of orthotic devices prescribed using pressure data on lower extremity kinematics and pressures beneath the shoe during running.
    Dixon SJ; McNally K
    Clin Biomech (Bristol, Avon); 2008 Jun; 23(5):593-600. PubMed ID: 18355949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ankle-foot orthoses for children with hemiplegia on weight-bearing and functional ability.
    O'Reilly T; Hunt A; Thomas B; Harris L; Burns J
    Pediatr Phys Ther; 2009; 21(3):225-34. PubMed ID: 19680063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.