These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. HermesB: a continuous neural recording system for freely behaving primates. Santhanam G; Linderman MD; Gilja V; Afshar A; Ryu SI; Meng TH; Shenoy KV IEEE Trans Biomed Eng; 2007 Nov; 54(11):2037-50. PubMed ID: 18018699 [TBL] [Abstract][Full Text] [Related]
8. Large-scale neural ensemble recording in the brains of freely behaving mice. Lin L; Chen G; Xie K; Zaia KA; Zhang S; Tsien JZ J Neurosci Methods; 2006 Jul; 155(1):28-38. PubMed ID: 16554093 [TBL] [Abstract][Full Text] [Related]
9. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface. Gore RK; Choi Y; Bellamkonda R; English A J Neural Eng; 2015 Feb; 12(1):016017. PubMed ID: 25605627 [TBL] [Abstract][Full Text] [Related]
10. A low cost, high precision subminiature microdrive for extracellular unit recording in behaving animals. Bilkey DK; Muir GM J Neurosci Methods; 1999 Oct; 92(1-2):87-90. PubMed ID: 10595706 [TBL] [Abstract][Full Text] [Related]
11. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856 [TBL] [Abstract][Full Text] [Related]
12. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943 [TBL] [Abstract][Full Text] [Related]
13. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Clark JJ; Sandberg SG; Wanat MJ; Gan JO; Horne EA; Hart AS; Akers CA; Parker JG; Willuhn I; Martinez V; Evans SB; Stella N; Phillips PE Nat Methods; 2010 Feb; 7(2):126-9. PubMed ID: 20037591 [TBL] [Abstract][Full Text] [Related]
14. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions. Headley DB; DeLucca MV; Haufler D; Paré D J Neurophysiol; 2015 Apr; 113(7):2721-32. PubMed ID: 25652930 [TBL] [Abstract][Full Text] [Related]
15. A modification of the Harper-McGinty microdrive for use in chronically prepared rabbits. McKown MD; Schadt JC J Neurosci Methods; 2006 Jun; 153(2):239-42. PubMed ID: 16406040 [TBL] [Abstract][Full Text] [Related]
16. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning. Sato T; Suzuki T; Mabuchi K J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616 [TBL] [Abstract][Full Text] [Related]
17. Active stabilization of electrodes for intracellular recording in awake behaving animals. Fee MS Neuron; 2000 Sep; 27(3):461-8. PubMed ID: 11055429 [TBL] [Abstract][Full Text] [Related]
18. Metal microdrive and head cap system for silicon probe recovery in freely moving rodent. Vöröslakos M; Petersen PC; Vöröslakos B; Buzsáki G Elife; 2021 May; 10():. PubMed ID: 34009122 [TBL] [Abstract][Full Text] [Related]
19. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. Haiss F; Butovas S; Schwarz C J Neurosci Methods; 2010 Mar; 187(1):67-72. PubMed ID: 20036690 [TBL] [Abstract][Full Text] [Related]
20. Cortical recording with polypyrrole microwire electrodes. Bae WJ; Ruddy BP; Richardson AG; Hunter IW; Bizzi E Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5794-7. PubMed ID: 19164034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]