These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 16438312)
1. Genetic, physiological, and environmental factors affecting acrylamide concentration in fried potato products. Silva EM; Simon PW Adv Exp Med Biol; 2005; 561():371-86. PubMed ID: 16438312 [TBL] [Abstract][Full Text] [Related]
2. Acrylamide in Japanese processed foods and factors affecting acrylamide level in potato chips and tea. Yoshida M; Ono H; Chuda Y; Yada H; Ohnishi-Kameyama M; Kobayashi H; Ohara-Takada A; Matsuura-Endo C; Mori M; Hayashi N; Yamaguchi Y Adv Exp Med Biol; 2005; 561():405-13. PubMed ID: 16438315 [TBL] [Abstract][Full Text] [Related]
3. The effect of cooking on acrylamide and its precursors in potato, wheat and rye. Elmore JS; Koutsidis G; Dodson AT; Mottram DS; Wedzicha BL Adv Exp Med Biol; 2005; 561():255-69. PubMed ID: 16438303 [TBL] [Abstract][Full Text] [Related]
5. Factors that influence the acrylamide content of heated foods. Rydberg P; Eriksson S; Tareke E; Karlsson P; Ehrenberg L; Törnqvist M Adv Exp Med Biol; 2005; 561():317-28. PubMed ID: 16438308 [TBL] [Abstract][Full Text] [Related]
6. Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. Matsuura-Endo C; Ohara-Takada A; Chuda Y; Ono H; Yada H; Yoshida M; Kobayashi A; Tsuda S; Takigawa S; Noda T; Yamauchi H; Mori M Biosci Biotechnol Biochem; 2006 May; 70(5):1173-80. PubMed ID: 16717419 [TBL] [Abstract][Full Text] [Related]
7. Reduction in Dietary Acrylamide Exposure-Impact of Potatoes with Low Acrylamide Potential. Tran NL; Barraj LM; Collinge S Risk Anal; 2017 Sep; 37(9):1754-1767. PubMed ID: 27866376 [TBL] [Abstract][Full Text] [Related]
8. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products. Zhu X; Gong H; He Q; Zeng Z; Busse JS; Jin W; Bethke PC; Jiang J Plant Biotechnol J; 2016 Feb; 14(2):709-18. PubMed ID: 26079224 [TBL] [Abstract][Full Text] [Related]
9. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Ohara-Takada A; Matsuura-Endo C; Chuda Y; Ono H; Yada H; Yoshida M; Kobayashi A; Tsuda S; Takigawa S; Noda T; Yamauchi H; Mori M Biosci Biotechnol Biochem; 2005 Jul; 69(7):1232-8. PubMed ID: 16041124 [TBL] [Abstract][Full Text] [Related]
10. Impact of harvest year on amino acids and sugars in potatoes and effect on acrylamide formation during frying. Viklund GA; Olsson KM; Sjöholm IM; Skog KI J Agric Food Chem; 2008 Aug; 56(15):6180-4. PubMed ID: 18624433 [TBL] [Abstract][Full Text] [Related]
11. Acrylamide in French fries: influence of free amino acids and sugars. Becalski A; Lau BP; Lewis D; Seaman SW; Hayward S; Sahagian M; Ramesh M; Leclerc Y J Agric Food Chem; 2004 Jun; 52(12):3801-6. PubMed ID: 15186100 [TBL] [Abstract][Full Text] [Related]
12. Kinetic model for the formation of acrylamide during the finish-frying of commercial french fries. Parker JK; Balagiannis DP; Higley J; Smith G; Wedzicha BL; Mottram DS J Agric Food Chem; 2012 Sep; 60(36):9321-31. PubMed ID: 22924541 [TBL] [Abstract][Full Text] [Related]
13. Added versus accumulated sugars on color development and acrylamide formation in french-fried potato strips. Higley J; Kim JY; Huber KC; Smith G J Agric Food Chem; 2012 Sep; 60(35):8763-71. PubMed ID: 22881236 [TBL] [Abstract][Full Text] [Related]
14. Extensive variation in fried chip color and tuber composition in cold-stored tubers of wild potato (solanum) germplasm. McCann LC; Bethke PC; Simon PW J Agric Food Chem; 2010 Feb; 58(4):2368-76. PubMed ID: 20099883 [TBL] [Abstract][Full Text] [Related]
15. Reduction of acrylamide formation in fried potato chips by Aureobasidum pullulans L1 strain. Di Francesco A; Mari M; Ugolini L; Parisi B; Genovese J; Lazzeri L; Baraldi E Int J Food Microbiol; 2019 Jan; 289():168-173. PubMed ID: 30253309 [TBL] [Abstract][Full Text] [Related]
16. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation. Zhu F; Cai YZ; Ke J; Corke H J Sci Food Agric; 2010 Oct; 90(13):2254-62. PubMed ID: 20629114 [TBL] [Abstract][Full Text] [Related]
17. Effects of nitrogen and sulfur fertilization on free amino acids, sugars, and acrylamide-forming potential in potato. Muttucumaru N; Powers SJ; Elmore JS; Mottram DS; Halford NG J Agric Food Chem; 2013 Jul; 61(27):6734-42. PubMed ID: 23768004 [TBL] [Abstract][Full Text] [Related]
18. Kinetic models as a route to control acrylamide formation in food. Wedzicha BL; Mottram DS; Elmore JS; Koutsidis G; Dodson AT Adv Exp Med Biol; 2005; 561():235-53. PubMed ID: 16438302 [TBL] [Abstract][Full Text] [Related]
19. Reducing acrylamide precursors in raw materials derived from wheat and potato. Muttucumaru N; Elmore JS; Curtis T; Mottram DS; Parry MA; Halford NG J Agric Food Chem; 2008 Aug; 56(15):6167-72. PubMed ID: 18624429 [TBL] [Abstract][Full Text] [Related]
20. Acrylamide reduction in processed foods. Hanley AB; Offen C; Clarke M; Ing B; Roberts M; Burch R Adv Exp Med Biol; 2005; 561():387-92. PubMed ID: 16438313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]