These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 16438682)

  • 1. Fungi growing on aromatic hydrocarbons: biotechnology's unexpected encounter with biohazard?
    Prenafeta-Boldú FX; Summerbell R; Sybren de Hoog G
    FEMS Microbiol Rev; 2006 Jan; 30(1):109-30. PubMed ID: 16438682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons.
    Badali H; Prenafeta-Boldu FX; Guarro J; Klaassen CH; Meis JF; de Hoog GS
    Fungal Biol; 2011 Oct; 115(10):1019-29. PubMed ID: 21944214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms.
    Chaillan F; Le Flèche A; Bury E; Phantavong YH; Grimont P; Saliot A; Oudot J
    Res Microbiol; 2004 Sep; 155(7):587-95. PubMed ID: 15313261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons.
    Isola D; Selbmann L; de Hoog GS; Fenice M; Onofri S; Prenafeta-Boldú FX; Zucconi L
    Mycopathologia; 2013 Jun; 175(5-6):369-79. PubMed ID: 23475324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal diversity and use in decomposition of environmental pollutants.
    Tortella GR; Diez MC; Duran N
    Crit Rev Microbiol; 2005; 31(4):197-212. PubMed ID: 16417201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts.
    Bergauer P; Fonteyne PA; Nolard N; Schinner F; Margesin R
    Chemosphere; 2005 May; 59(7):909-18. PubMed ID: 15823324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tolerance of Antarctic soil fungi to hydrocarbons.
    Hughes KA; Bridge P; Clark MS
    Sci Total Environ; 2007 Jan; 372(2-3):539-48. PubMed ID: 17157897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of oil tank bottom sludge using microbial consortia.
    Gallego JL; García-Martínez MJ; Llamas JF; Belloch C; Peláez AI; Sánchez J
    Biodegradation; 2007 Jun; 18(3):269-81. PubMed ID: 16821101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limits of anaerobic biodegradation.
    Field JA
    Water Sci Technol; 2002; 45(10):9-18. PubMed ID: 12188583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Addition of allochthonous fungi to a historically contaminated soil affects both remediation efficiency and bacterial diversity.
    Federici E; Leonardi V; Giubilei MA; Quaratino D; Spaccapelo R; D'Annibale A; Petruccioli M
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):203-11. PubMed ID: 17823794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility.
    Brzeszcz J; Kaszycki P
    Biodegradation; 2018 Aug; 29(4):359-407. PubMed ID: 29948519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134.
    Pérez-Pantoja D; De la Iglesia R; Pieper DH; González B
    FEMS Microbiol Rev; 2008 Aug; 32(5):736-94. PubMed ID: 18691224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans.
    Napolitano R; Juárez MP
    Arch Biochem Biophys; 1997 Aug; 344(1):208-14. PubMed ID: 9244399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Decomposition of natural aromatic structures and xenobiotics by fungi].
    Rabinovich ML; Bolobova AV; Vasil'chenko LG
    Prikl Biokhim Mikrobiol; 2004; 40(1):5-23. PubMed ID: 15029691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prenyl transfer to aromatic substrates: genetics and enzymology.
    Heide L
    Curr Opin Chem Biol; 2009 Apr; 13(2):171-9. PubMed ID: 19299193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways.
    Kim SJ; Kweon O; Cerniglia CE
    Curr Opin Microbiol; 2009 Jun; 12(3):301-9. PubMed ID: 19414279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ralstonia pickettii in environmental biotechnology: potential and applications.
    Ryan MP; Pembroke JT; Adley CC
    J Appl Microbiol; 2007 Oct; 103(4):754-64. PubMed ID: 17897177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture.
    Selesi D; Meckenstock RU
    FEMS Microbiol Ecol; 2009 Apr; 68(1):86-93. PubMed ID: 19187215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.