These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16439364)

  • 1. Opposite effects of rho family GTPases on engulfment of apoptotic cells by macrophages.
    Nakaya M; Tanaka M; Okabe Y; Hanayama R; Nagata S
    J Biol Chem; 2006 Mar; 281(13):8836-42. PubMed ID: 16439364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dermal fibroblast phagocytosis of apoptotic cells: A novel pathway for wound resolution.
    Romana-Souza B; Chen L; Leonardo TR; Chen Z; DiPietro LA
    FASEB J; 2021 Apr; 35(4):e21443. PubMed ID: 33749877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane backtracking at the maximum capacity of nondigestible antigen phagocytosis in macrophages.
    Horonushi D; Yoshida A; Nakata Y; Sentoku M; Furumoto Y; Azuma T; Suzuki S; Ando M; Yasuda K
    Biophys J; 2023 Jul; 122(13):2707-2726. PubMed ID: 37226441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Assay to Determine Phagocytosis of Apoptotic Cells by Cardiac Macrophages and Cardiac Myofibroblasts.
    Horii Y; Matsuda S; Watari K; Nagasaka A; Kurose H; Nakaya M
    Bio Protoc; 2017 Sep; 7(18):e2553. PubMed ID: 34541199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efferocytosis assay to quantify the engulfment and acidification of apoptotic cells by macrophages using flow cytometry.
    Wu X; Wang Z; Shern T; Zhang H
    STAR Protoc; 2024 Sep; 5(3):103215. PubMed ID: 39068649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of phagocytosis: two stages of engulfment.
    Richards DM; Endres RG
    Biophys J; 2014 Oct; 107(7):1542-53. PubMed ID: 25296306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled single-cell and bulk RNA-seq analysis reveals the engulfment role of endothelial cells in atherosclerosis.
    Xu J; Wang J; Zhang H; Chen Y; Zhang X; Zhang Y; Xie M; Xiao J; Qiu J; Wang G
    Genes Dis; 2024 Sep; 11(5):101250. PubMed ID: 39022128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.
    Fadok VA; Bratton DL; Konowal A; Freed PW; Westcott JY; Henson PM
    J Clin Invest; 1998 Feb; 101(4):890-8. PubMed ID: 9466984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clearance of apoptotic neutrophils and resolution of inflammation.
    Greenlee-Wacker MC
    Immunol Rev; 2016 Sep; 273(1):357-70. PubMed ID: 27558346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance.
    Elliott MR; Chekeni FB; Trampont PC; Lazarowski ER; Kadl A; Walk SF; Park D; Woodson RI; Ostankovich M; Sharma P; Lysiak JJ; Harden TK; Leitinger N; Ravichandran KS
    Nature; 2009 Sep; 461(7261):282-6. PubMed ID: 19741708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis.
    Truman LA; Ford CA; Pasikowska M; Pound JD; Wilkinson SJ; Dumitriu IE; Melville L; Melrose LA; Ogden CA; Nibbs R; Graham G; Combadiere C; Gregory CD
    Blood; 2008 Dec; 112(13):5026-36. PubMed ID: 18799722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor.
    Park SY; Jung MY; Kim HJ; Lee SJ; Kim SY; Lee BH; Kwon TH; Park RW; Kim IS
    Cell Death Differ; 2008 Jan; 15(1):192-201. PubMed ID: 17962816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferocyte-Derived MCTRs Metabolically Prime Macrophages for Continual Efferocytosis via Rac1-Mediated Activation of Glycolysis.
    Koenis DS; de Matteis R; Rajeeve V; Cutillas P; Dalli J
    Adv Sci (Weinh); 2024 Feb; 11(7):e2304690. PubMed ID: 38064171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efferocytosis and Respiratory Disease.
    Zheng W; Zhou Z; Guo X; Zuo X; Zhang J; An Y; Zheng H; Yue Y; Wang G; Wang F
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis.
    Purnama CA; Meiliana A; Barliana MI; Lestari K
    Cell Div; 2023 Apr; 18(1):5. PubMed ID: 37032375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Rho GTPases in inflammatory bowel disease.
    Li X; Zhang M; Zhou G; Xie Z; Wang Y; Han J; Li L; Wu Q; Zhang S
    Cell Death Discov; 2023 Jan; 9(1):24. PubMed ID: 36690621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage Meets the Circadian Clock: Implication of the Circadian Clock in the Role of Macrophages in Acute Lower Respiratory Tract Infection.
    Shirato K; Sato S
    Front Cell Infect Microbiol; 2022; 12():826738. PubMed ID: 35281442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efferocytosis and Its Role in Inflammatory Disorders.
    Ge Y; Huang M; Yao YM
    Front Cell Dev Biol; 2022; 10():839248. PubMed ID: 35281078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RhoG's Role in T Cell Activation and Function.
    Ahmad Mokhtar AM; Salikin NH; Haron AS; Amin-Nordin S; Hashim IF; Mohd Zaini Makhtar M; Zulfigar SB; Ismail NI
    Front Immunol; 2022; 13():845064. PubMed ID: 35280994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew.
    Auyez A; Sayan AE; Kriajevska M; Tulchinsky E
    Cancers (Basel); 2021 Sep; 13(19):. PubMed ID: 34638349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.