BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 16439663)

  • 1. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II.
    Vogel A; Schilling O; Meyer-Klaucke W
    Biochemistry; 2004 Aug; 43(32):10379-86. PubMed ID: 15301536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemistry. Loop grafting and the origins of enzyme species.
    Tawfik DS
    Science; 2006 Jan; 311(5760):475-6. PubMed ID: 16439649
    [No Abstract]   [Full Text] [Related]  

  • 4. Biochemical and structural characterization of Salmonella typhimurium glyoxalase II: new insights into metal ion selectivity.
    Campos-Bermudez VA; Leite NR; Krog R; Costa-Filho AJ; Soncini FC; Oliva G; Vila AJ
    Biochemistry; 2007 Oct; 46(39):11069-79. PubMed ID: 17764159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo.
    Schilling O; Wenzel N; Naylor M; Vogel A; Crowder M; Makaroff C; Meyer-Klaucke W
    Biochemistry; 2003 Oct; 42(40):11777-86. PubMed ID: 14529289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein design through systematic catalytic loop exchange in the (beta/alpha)8 fold.
    Ochoa-Leyva A; Soberón X; Sánchez F; Argüello M; Montero-Morán G; Saab-Rincón G
    J Mol Biol; 2009 Apr; 387(4):949-64. PubMed ID: 19233201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of new catalytic activity using the alpha/beta-barrel scaffold.
    Altamirano MM; Blackburn JM; Aguayo C; Fersht AR
    Nature; 2000 Feb; 403(6770):617-22. PubMed ID: 10688189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny.
    Silva MS; Barata L; Ferreira AE; Romão S; Tomás AM; Freire AP; Cordeiro C
    Biochemistry; 2008 Jan; 47(1):195-204. PubMed ID: 18052346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-beta-lactamases.
    Merino M; Pérez-Llarena FJ; Kerff F; Poza M; Mallo S; Rumbo-Feal S; Beceiro A; Juan C; Oliver A; Bou G
    J Antimicrob Chemother; 2010 Sep; 65(9):1950-4. PubMed ID: 20624761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
    Dal Peraro M; Vila AJ; Carloni P
    Proteins; 2004 Feb; 54(3):412-23. PubMed ID: 14747990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of a ternary complex of allantoate amidohydrolase from Escherichia coli reveals its mechanics.
    Agarwal R; Burley SK; Swaminathan S
    J Mol Biol; 2007 Apr; 368(2):450-63. PubMed ID: 17362992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evolutionary classification of the metallo-beta-lactamase fold proteins.
    Aravind L
    In Silico Biol; 1999; 1(2):69-91. PubMed ID: 11471246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.
    Gomes CM; Frazão C; Xavier AV; Legall J; Teixeira M
    Protein Sci; 2002 Mar; 11(3):707-12. PubMed ID: 11847294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function studies of arginine at position 276 in CTX-M beta-lactamases.
    Pérez-Llarena FJ; Cartelle M; Mallo S; Beceiro A; Pérez A; Villanueva R; Romero A; Bonnet R; Bou G
    J Antimicrob Chemother; 2008 Apr; 61(4):792-7. PubMed ID: 18281307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl groups in the (beta)beta sandwich of metallo-beta-lactamases favor enzyme activity: a computational protein design study.
    Oelschlaeger P; Mayo SL
    J Mol Biol; 2005 Jul; 350(3):395-401. PubMed ID: 15946681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.
    Mathieu V; Fastrez J; Soumillion P
    Protein Eng Des Sel; 2010 Sep; 23(9):699-709. PubMed ID: 20591901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop.
    Palacios AR; Mojica MF; Giannini E; Taracila MA; Bethel CR; Alzari PM; Otero LH; Klinke S; Llarrull LI; Bonomo RA; Vila AJ
    Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30348667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases.
    Delmas J; Chen Y; Prati F; Robin F; Shoichet BK; Bonnet R
    J Mol Biol; 2008 Jan; 375(1):192-201. PubMed ID: 17999931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg(257)/Lys(260), and unmasking of acid-base catalysis.
    Urscher M; Deponte M
    Biol Chem; 2009 Nov; 390(11):1171-83. PubMed ID: 19663684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.