These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16440083)

  • 1. Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine.
    Kuhnline CD; Gangel MG; Hulvey MK; Martin RS
    Analyst; 2006 Feb; 131(2):202-7. PubMed ID: 16440083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses.
    Kovarik ML; Torrence NJ; Spence DM; Martin RS
    Analyst; 2004 May; 129(5):400-5. PubMed ID: 15116230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.
    Sameenoi Y; Mensack MM; Boonsong K; Ewing R; Dungchai W; Chailapakul O; Cropek DM; Henry CS
    Analyst; 2011 Aug; 136(15):3177-84. PubMed ID: 21698305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical detection of biological thiols in a microchip capillary channel.
    Chand R; Jha SK; Islam K; Han D; Shin IS; Kim YS
    Biosens Bioelectron; 2013 Feb; 40(1):362-7. PubMed ID: 22940195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene.
    Xu H; Xiao J; Liu B; Griveau S; Bedioui F
    Biosens Bioelectron; 2015 Apr; 66():438-44. PubMed ID: 25497984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase.
    Crouch E; Cowell DC; Hoskins S; Pittson RW; Hart JP
    Anal Biochem; 2005 Dec; 347(1):17-23. PubMed ID: 16266677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis.
    Mecker LC; Martin RS
    Electrophoresis; 2006 Dec; 27(24):5032-42. PubMed ID: 17096314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/electrochemistry.
    Kovarik ML; Li MW; Martin RS
    Electrophoresis; 2005 Jan; 26(1):202-10. PubMed ID: 15624172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices.
    Fredrick SJ; Gross EM
    Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt tetrasulphonated phthalocyanine immobilized on poly-L-lysine film onto glassy carbon electrode as amperometric sensor for cysteine.
    Luz Rde C; Moreira AB; Damos FS; Tanaka AA; Kubota LT
    J Pharm Biomed Anal; 2006 Sep; 42(2):184-91. PubMed ID: 16730154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platinum particles-modified electrode for HPLC with pulsed amperometric detection of thiols in rat striatum.
    Cao XN; Li JH; Xu HH; Lin L; Xian YZ; Yamamoto K; Jin LT
    Biomed Chromatogr; 2004 Oct; 18(8):564-69. PubMed ID: 15386515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmaceutical and biomedical applications of capillary electrophoresis/electrochemistry.
    Lunte SM; O'Shea TJ
    Electrophoresis; 1994 Jan; 15(1):79-86. PubMed ID: 8143684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microband lactate biosensor fabricated using a water-based screen-printed carbon ink.
    Rawson FJ; Purcell WM; Xu J; Pemberton RM; Fielden PR; Biddle N; Hart JP
    Talanta; 2009 Jan; 77(3):1149-54. PubMed ID: 19064104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode.
    Agüí L; Peña-Farfal C; Yáñez-Sedeño P; Pingarrón JM
    Talanta; 2007 Dec; 74(3):412-20. PubMed ID: 18371657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an amperometric assay for phosphate ions in urine based on a chemically modified screen-printed carbon electrode.
    Gilbert L; Jenkins AT; Browning S; Hart JP
    Anal Biochem; 2009 Oct; 393(2):242-7. PubMed ID: 19576165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector.
    Siangproh W; Chailapakul O; Laocharoensuk R; Wang J
    Talanta; 2005 Oct; 67(5):903-7. PubMed ID: 18970257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols.
    Chen G; Zhang L; Wang J
    Talanta; 2004 Nov; 64(4):1018-23. PubMed ID: 18969705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis.
    Ding Y; Ayon A; García CD
    Anal Chim Acta; 2007 Feb; 584(2):244-51. PubMed ID: 17386611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine.
    Shahrokhian S; Ghalkhani M; Adeli M; Amini MK
    Biosens Bioelectron; 2009 Jul; 24(11):3235-41. PubMed ID: 19443205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.