These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 16440098)
1. Imaging of voltage-gated alamethicin pores in a reconstituted bilayer lipid membrane via scanning electrochemical microscopy. Wilburn JP; Wright DW; Cliffel DE Analyst; 2006 Feb; 131(2):311-6. PubMed ID: 16440098 [TBL] [Abstract][Full Text] [Related]
2. Lipid bilayer microarray for parallel recording of transmembrane ion currents. Le Pioufle B; Suzuki H; Tabata KV; Noji H; Takeuchi S Anal Chem; 2008 Jan; 80(1):328-32. PubMed ID: 18001126 [TBL] [Abstract][Full Text] [Related]
3. A tethered bilayer sensor containing alamethicin channels and its detection of amiloride based inhibitors. Yin P; Burns CJ; Osman PD; Cornell BA Biosens Bioelectron; 2003 Apr; 18(4):389-97. PubMed ID: 12604256 [TBL] [Abstract][Full Text] [Related]
4. Voltage-dependent conductance induced by alamethicin-phospholipid conjugates in lipid bilayers. Latorre R; Miller CG; Quay S Biophys J; 1981 Dec; 36(3):803-9. PubMed ID: 7326333 [TBL] [Abstract][Full Text] [Related]
5. Role of Transmembrane Potential and Defects on the Permeabilization of Lipid Bilayers by Alamethicin, an Ion-Channel-Forming Peptide. Su Z; Shodiev M; Leitch JJ; Abbasi F; Lipkowski J Langmuir; 2018 May; 34(21):6249-6260. PubMed ID: 29722994 [TBL] [Abstract][Full Text] [Related]
6. Fractional polymerization of a suspended planar bilayer creates a fluid, highly stable membrane for ion channel recordings. Heitz BA; Jones IW; Hall HK; Aspinwall CA; Saavedra SS J Am Chem Soc; 2010 May; 132(20):7086-93. PubMed ID: 20441163 [TBL] [Abstract][Full Text] [Related]
7. Voltage-dependent conductance for alamethicin in phospholipid vesicles. A test for the mechanism of gating. Archer SJ; Cafiso DS Biophys J; 1991 Aug; 60(2):380-8. PubMed ID: 1717015 [TBL] [Abstract][Full Text] [Related]
8. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Si W; Li ZT; Hou JL Angew Chem Int Ed Engl; 2014 Apr; 53(18):4578-81. PubMed ID: 24683053 [TBL] [Abstract][Full Text] [Related]
9. Simulation studies of alamethicin-bilayer interactions. Biggin PC; Breed J; Son HS; Sansom MS Biophys J; 1997 Feb; 72(2 Pt 1):627-36. PubMed ID: 9017192 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration. Wang KF; Nagarajan R; Camesano TA Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501 [TBL] [Abstract][Full Text] [Related]
11. Permeability of the nuclear envelope at isolated Xenopus oocyte nuclei studied by scanning electrochemical microscopy. Guo J; Amemiya S Anal Chem; 2005 Apr; 77(7):2147-56. PubMed ID: 15801749 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations. Sansom MS; Tieleman DP; Berendsen HJ Novartis Found Symp; 1999; 225():128-41; discussion 141-5. PubMed ID: 10472052 [TBL] [Abstract][Full Text] [Related]
13. Pressure effects on alamethicin conductance in bilayer membranes. Bruner LJ; Hall JE Biophys J; 1983 Oct; 44(1):39-47. PubMed ID: 6626678 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of alamethicin insertion into lipid bilayers. He K; Ludtke SJ; Heller WT; Huang HW Biophys J; 1996 Nov; 71(5):2669-79. PubMed ID: 8913604 [TBL] [Abstract][Full Text] [Related]
15. Pore formation in lipid membranes by alamethicin. Fringeli UP; Fringeli M Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3852-6. PubMed ID: 291045 [TBL] [Abstract][Full Text] [Related]
16. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example. Futaki S; Noshiro D; Kiwada T; Asami K Acc Chem Res; 2013 Dec; 46(12):2924-33. PubMed ID: 23680081 [TBL] [Abstract][Full Text] [Related]
17. Asymmetrical ion-channel model inferred from two-dimensional crystallization of a peptide antibiotic. Ionov R; El-Abed A; Angelova A; Goldmann M; Peretti P Biophys J; 2000 Jun; 78(6):3026-35. PubMed ID: 10827981 [TBL] [Abstract][Full Text] [Related]
18. Heating-enabled formation of droplet interface bilayers using Escherichia coli total lipid extract. Taylor GJ; Sarles SA Langmuir; 2015; 31(1):325-37. PubMed ID: 25514167 [TBL] [Abstract][Full Text] [Related]
19. "Reversed" alamethicin conductance in lipid bilayers. Taylor RJ; de Levie R Biophys J; 1991 Apr; 59(4):873-9. PubMed ID: 1712238 [TBL] [Abstract][Full Text] [Related]
20. Scanning electrochemical microscopy. 38. Application of SECM to the study of charge transfer through bilayer lipid membranes. Tsionsky M; Zhou J; Amemiya S; Fan FR; Bard AJ; Dryfe RA Anal Chem; 1999 Oct; 71(19):4300-5. PubMed ID: 10660439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]