These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16440354)

  • 21. Retrospective optimization of time-dependent fermentation control strategies using time-independent historical data.
    Coleman MC; Block DE
    Biotechnol Bioeng; 2006 Oct; 95(3):412-23. PubMed ID: 16894631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological characterization of brewer's yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts.
    Piddocke MP; Kreisz S; Heldt-Hansen HP; Nielsen KF; Olsson L
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):453-64. PubMed ID: 19343343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine.
    Okonkowski J; Kizer-Bentley L; Listner K; Robinson D; Chartrain M
    Biotechnol Prog; 2005; 21(4):1038-47. PubMed ID: 16080681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pilot-scale harvest of recombinant yeast employing microfiltration: a case study.
    Russotti G; Osawa AE; Sitrin RD; Buckland BC; Adams WR; Lee SS
    J Biotechnol; 1995 Oct; 42(3):235-46. PubMed ID: 7576542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Process technology for production and recovery of heterologous proteins with Pichia pastoris.
    Jahic M; Veide A; Charoenrat T; Teeri T; Enfors SO
    Biotechnol Prog; 2006; 22(6):1465-73. PubMed ID: 17137292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defining process design space for biotech products: case study of Pichia pastoris fermentation.
    Harms J; Wang X; Kim T; Yang X; Rathore AS
    Biotechnol Prog; 2008; 24(3):655-62. PubMed ID: 18412404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prevention of human granulocyte colony-stimulating factor protein aggregation in recombinant Pichia pastoris fed-batch fermentation using additives.
    Bahrami A; Shojaosadati SA; Khalilzadeh R; Mohammadian J; Farahani EV; Masoumian MR
    Biotechnol Appl Biochem; 2009 Feb; 52(Pt 2):141-8. PubMed ID: 18479251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Process cost and facility considerations in the selection of primary cell culture clarification technology.
    Felo M; Christensen B; Higgins J
    Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Mut+ and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration.
    Pla IA; Damasceno LM; Vannelli T; Ritter G; Batt CA; Shuler ML
    Biotechnol Prog; 2006; 22(3):881-8. PubMed ID: 16739975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High density fermentation and activity of a recombinant lumbrokinase (PI239) from Pichia pastoris.
    Ge T; Fu SH; Xu LH; Tang Q; Wang HY; Guan KP; Liang GD
    Protein Expr Purif; 2007 Mar; 52(1):1-7. PubMed ID: 17118673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crossflow microfiltration of yeast suspensions in tubular filters.
    Redkar SG; Davis RH
    Biotechnol Prog; 1993; 9(6):625-34. PubMed ID: 7764351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crossflow filtration for CHO cell separation by microfiltration using crossflow systems.
    Eberlein R; Meyeroltmanns F; Pahl I; Prashad M
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):243-8. PubMed ID: 15954595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfiltration and ultrafiltration of polysaccharides produced by fermentation using a rotating disk dynamic filtration system.
    Brou A; Jaffrin MY; Ding LH; Courtois J
    Biotechnol Bioeng; 2003 May; 82(4):429-37. PubMed ID: 12632399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the interaction of fermentation and microfiltration operations: erythromycin recovery from Saccharopolyspora erythraea fermentation broths.
    Davies JL; Baganz F; Ison AP; Lye GJ
    Biotechnol Bioeng; 2000 Aug; 69(4):429-39. PubMed ID: 10862681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clarification of vaccines: An overview of filter based technology trends and best practices.
    Besnard L; Fabre V; Fettig M; Gousseinov E; Kawakami Y; Laroudie N; Scanlan C; Pattnaik P
    Biotechnol Adv; 2016; 34(1):1-13. PubMed ID: 26657051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A methodological approach to scaling up fermentation and primary recovery processes to the manufacturing scale for vaccine production.
    Lee TS
    Vaccine; 2009 Oct; 27(46):6439-43. PubMed ID: 19577635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capture of bacteria from fermentation broth by body feed filtration: a solved problem?
    O'Mahony K; Freitag R; Dhote B; Hilbrig F; Müller P; Schumacher I
    Biotechnol Prog; 2006; 22(2):471-83. PubMed ID: 16599565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decrease of hirudin degradation by deleting the KEX1 gene in recombinant Pichia pastoris.
    Ni Z; Zhou X; Sun X; Wang Y; Zhang Y
    Yeast; 2008 Jan; 25(1):1-8. PubMed ID: 17973232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary Recovery of Yeast Culture Supernatant for Recombinant Protein Purification.
    Maurer MM; Schillinger H
    Methods Mol Biol; 2019; 1923():335-342. PubMed ID: 30737749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of solution environment on mammalian cell fermentation broth properties: enhanced impurity removal and clarification performance.
    Westoby M; Chrostowski J; de Vilmorin P; Smelko JP; Romero JK
    Biotechnol Bioeng; 2011 Jan; 108(1):50-8. PubMed ID: 20812295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.