These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16440401)

  • 1. Fluorescence imaging of sample zone narrowing and dispersion in a glass microchip: the effects of organic solvent (acetonitrile)-salt mixtures in the sample matrix and surfactant micelles in the running buffer.
    Jia Z; Lee YK; Fang Q; Huie CW
    Electrophoresis; 2006 Mar; 27(5-6):1104-11. PubMed ID: 16440401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stacking and separation of coproporphyrin isomers by acetonitrile-salt mixtures in micellar electrokinetic chromatography.
    So TS; Jia L; Huie CW
    Electrophoresis; 2001 Jul; 22(11):2159-66. PubMed ID: 11504047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semihydrodynamic injection for high salt stacking and sweeping on microchip electrophoresis and its application for the analysis of estrogen and estrogen binding.
    Chen CC; Yen SF; Makamba H; Li CW; Tsai ML; Chen SH
    Anal Chem; 2007 Jan; 79(1):195-201. PubMed ID: 17194139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacking and separation of enantiomers by acetonitrile-salt mixtures in micellar electrokinetic chromatography.
    Choy TM; Chan WH; Lee AW; Huie CW
    Electrophoresis; 2003 Sep; 24(18):3116-23. PubMed ID: 14518033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stacking due to ionic transport number mismatch during sample sweeping on microchips.
    Liu Y; Foote RS; Jacobson SC; Ramsey JM
    Lab Chip; 2005 Apr; 5(4):457-65. PubMed ID: 15791345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solute-solvent interactions in micellar electrokinetic chromatography: V. Factors that produce peak splitting.
    Ràfols C; Poza A; Fuguet E; Rosés M; Bosch E
    Electrophoresis; 2002 Aug; 23(15):2408-16. PubMed ID: 12210196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis.
    Lichtenberg J; Verpoorte E; de Rooij NF
    Electrophoresis; 2001 Jan; 22(2):258-71. PubMed ID: 11288893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of short-chain alcohols versus acetonitrile in the surfactant-mediated reversed-phase liquid chromatographic separation of β-blockers.
    Ruiz-Ángel MJ; Torres-Lapasió JR; Carda-Broch S; García-Álvarez-Coque MC
    J Chromatogr A; 2010 Nov; 1217(45):7090-9. PubMed ID: 20934180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography.
    Sueyoshi K; Kitagawa F; Otsuka K
    Anal Chem; 2008 Feb; 80(4):1255-62. PubMed ID: 18201071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-assisted field-amplified sample injection with reverse migrating micelles for analyzing trace steroids in MEKC.
    Fang H; Yang F; Sun J; Zeng Z; Xu Y
    Electrophoresis; 2007 Oct; 28(20):3697-704. PubMed ID: 17899536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micelle to solvent stacking of organic cations in capillary zone electrophoresis with electrospray ionization mass spectrometry.
    Quirino JP
    J Chromatogr A; 2009 Jan; 1216(2):294-9. PubMed ID: 19070862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step stacking in capillary zone electrophoresis featuring sweeping and micelle to solvent stacking: I. Organic cations.
    Quirino JP
    J Chromatogr A; 2010 Dec; 1217(49):7776-80. PubMed ID: 21035122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micelle stacking in micellar electrokinetic chromatography.
    Giordano BC; Newman CI; Federowicz PM; Collins GE; Burgi DS
    Anal Chem; 2007 Aug; 79(16):6287-94. PubMed ID: 17636879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient pseudo-isotachophoresis for sample concentration in capillary electrophoresis.
    Shihabi ZK
    Electrophoresis; 2002 Jun; 23(11):1612-7. PubMed ID: 12179979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic picoliter-scale translational spontaneous sample introduction for high-speed capillary electrophoresis.
    Zhang T; Fang Q; Du WB; Fu JL
    Anal Chem; 2009 May; 81(9):3693-8. PubMed ID: 19351143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely large volume electrokinetic stacking of cationic molecules in MEKC by EOF modulation with strong acids in sample solutions.
    Zhang HG; Zhu JH; Qi SD; Yan N; Chen XG
    Anal Chem; 2009 Nov; 81(21):8886-91. PubMed ID: 19791768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy.
    Tachi T; Kaji N; Tokeshi M; Baba Y
    Lab Chip; 2009 Apr; 9(7):966-71. PubMed ID: 19294309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-cross hydrostatic pressure sample injection for chip CE: variable sample plug volume and minimum number of electrodes.
    Luo Y; Wu D; Zeng S; Gai H; Long Z; Shen Z; Dai Z; Qin J; Lin B
    Anal Chem; 2006 Sep; 78(17):6074-80. PubMed ID: 16944886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices.
    Hoeman KW; Culbertson CT
    Electrophoresis; 2008 Dec; 29(24):4900-5. PubMed ID: 19130569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.