These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16441017)

  • 1. Defect and lattice structure for air-silica index-guiding holey fibers.
    Kim S; Jung Y; Oh K; Kobelke J; Schuster K; Kirchhof J
    Opt Lett; 2006 Jan; 31(2):164-6. PubMed ID: 16441017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New defect design in index guiding holey fiber for uniform birefringence and negative flat dispersion over a wide spectral range.
    Kim S; Paek U; Oh K
    Opt Express; 2005 Aug; 13(16):6039-50. PubMed ID: 19498612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach.
    Saitoh K; Florous NJ; Koshiba M
    Opt Lett; 2006 Jan; 31(1):26-8. PubMed ID: 16419866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and characterization of single-mode holey fibers with low bending losses.
    Tsuchida Y; Saitoh K; Koshiba M
    Opt Express; 2005 Jun; 13(12):4770-9. PubMed ID: 19495395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center.
    Park J; Lee S; Kim S; Oh K
    Opt Express; 2011 Jan; 19(3):1921-9. PubMed ID: 21369007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region.
    Tsuchida Y; Saitoh K; Koshiba M
    Opt Express; 2007 Feb; 15(4):1794-803. PubMed ID: 19532417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms.
    Florous N; Saitoh K; Koshiba M
    Opt Express; 2006 Jan; 14(2):901-13. PubMed ID: 19503410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses.
    Renversez G; Kuhlmey B; McPhedran R
    Opt Lett; 2003 Jun; 28(12):989-91. PubMed ID: 12836755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses.
    Saitoh K; Florous N; Koshiba M
    Opt Express; 2005 Oct; 13(21):8365-71. PubMed ID: 19498866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion control in square lattice photonic crystal fiber using hollow ring defects.
    Park J; Lee S; Lee S; Kim SE; Oh K
    Opt Express; 2012 Feb; 20(5):5281-90. PubMed ID: 22418334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion properties of square-lattice photonic crystal fibers.
    Bouk A; Cucinotta A; Poli F; Selleri S
    Opt Express; 2004 Mar; 12(5):941-6. PubMed ID: 19474905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending loss of elliptical-hole core circular-hole holey fibers bent in arbitrary bending directions.
    Eguchi M; Tsuji Y
    Appl Opt; 2010 Nov; 49(32):6207-12. PubMed ID: 21068849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion tailoring and compensation by modal interactions in OmniGuide fibers.
    Engeness T; Ibanescu M; Johnson S; Weisberg O; Skorobogatiy M; Jacobs S; Fink Y
    Opt Express; 2003 May; 11(10):1175-96. PubMed ID: 19465984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Holey optical fiber with circularly distributed holes analyzed by the radial effective-index method.
    Rastogi V; Chiang KS
    Opt Lett; 2003 Dec; 28(24):2449-51. PubMed ID: 14690111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antiguiding in microstructured optical fibers.
    Yan M; Shum P
    Opt Express; 2004 Jan; 12(1):104-16. PubMed ID: 19471516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber designs with significantly reduced nonlinearity for very long distance transmission.
    Hattori HT; Safaai-Jazi A
    Appl Opt; 1998 May; 37(15):3190-7. PubMed ID: 18273268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window.
    Saitoh K; Koshiba M
    Opt Express; 2004 May; 12(10):2027-32. PubMed ID: 19475038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers.
    Saitoh K; Varshney SK; Koshiba M
    Opt Express; 2007 Dec; 15(26):17724-35. PubMed ID: 19551069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous independent measurement of strain and temperature based on long-period fiber gratings inscribed in holey fibers depending on air-hole size.
    Han YG; Song S; Kim GH; Lee K; Lee SB; Lee JH; Jeong CH; Oh CH; Kang HJ
    Opt Lett; 2007 Aug; 32(15):2245-7. PubMed ID: 17671598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly dispersive large mode area photonic bandgap fiber.
    Gérôme F; Février S; Pryamikov AD; Auguste JL; Jamier R; Blondy JM; Likhachev ME; Bubnov MM; Semjonov SL; Dianov EM
    Opt Lett; 2007 May; 32(10):1208-10. PubMed ID: 17440536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.