These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16441053)

  • 1. Room-temperature slow light with semiconductor quantum-dot devices.
    Su H; Chuang SL
    Opt Lett; 2006 Jan; 31(2):271-3. PubMed ID: 16441053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier.
    Kondratko PK; Chuang SL
    Opt Express; 2007 Aug; 15(16):9963-9. PubMed ID: 19547346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers.
    Pesala B; Chen Z; Uskov AV; Chang-Hasnain C
    Opt Express; 2006 Dec; 14(26):12968-75. PubMed ID: 19532190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55 microm.
    Matsudaira A; Lee D; Kondratko P; Nielsen D; Chuang SL; Kim NJ; Oh JM; Pyun SH; Jeong WG; Jang JW
    Opt Lett; 2007 Oct; 32(19):2894-6. PubMed ID: 17909609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers.
    Su H; Kondratko P; Chuang SL
    Opt Express; 2006 May; 14(11):4800-7. PubMed ID: 19516637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 microm.
    Zilkie AJ; Meier J; Smith PW; Mojahedi M; Aitchison JS; Poole PJ; Allen CN; Barrios P; Poitras D
    Opt Express; 2006 Nov; 14(23):11453-9. PubMed ID: 19529563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.
    Ding Y; Aviles-Espinosa R; Cataluna MA; Nikitichev D; Ruiz M; Tran M; Robert Y; Kapsalis A; Simos H; Mesaritakis C; Xu T; Bardella P; Rossetti M; Krestnikov I; Livshits D; Montrosset I; Syvridis D; Krakowski M; Loza-Alvarez P; Rafailov E
    Opt Express; 2012 Jun; 20(13):14308-20. PubMed ID: 22714493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room temperature slow light in a quantum-well waveguide via coherent population oscillation.
    Palinginis P; Sedgwick F; Crankshaw S; Moewe M; Chang-Hasnain C
    Opt Express; 2005 Nov; 13(24):9909-15. PubMed ID: 19503201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 12 GHz passive harmonic mode-locking in a 1.06 μm semiconductor optical amplifier-based fiber laser with figure-eight cavity configuration.
    Chen HR; Lin KH; Tsai CY; Wu HH; Wu CH; Chen CH; Chi YC; Lin GR; Hsieh WF
    Opt Lett; 2013 Mar; 38(6):845-7. PubMed ID: 23503235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
    Contestabile G; Yoshida Y; Maruta A; Kitayama K
    Opt Express; 2012 Dec; 20(25):27902-7. PubMed ID: 23262735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems.
    Hamié A; Hamze M; Wei JL; Sharaiha A; Tang JM
    Opt Express; 2011 Dec; 19(25):25696-711. PubMed ID: 22273962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent control in quantum dot gain media using shaped pulses: a numerical study.
    Mishra AK; Karni O; Eisenstein G
    Opt Express; 2015 Nov; 23(23):29940-53. PubMed ID: 26698476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature slow light in an optical fiber with dual-frequency laser pumping.
    Qiu W; Liu J; Wang Y; Yang Y; Gao Y
    Appl Opt; 2018 Feb; 57(4):602-606. PubMed ID: 29400725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature.
    Kolarczik M; Owschimikow N; Korn J; Lingnau B; Kaptan Y; Bimberg D; Schöll E; Lüdge K; Woggon U
    Nat Commun; 2013; 4():2953. PubMed ID: 24336000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing a low-threshold quantum-dot laser based on a slow-light photonic crystal waveguide.
    Taleb H; Moravvej-Farshi MK
    Appl Opt; 2017 Dec; 56(35):9629-9637. PubMed ID: 29240107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon.
    Lu Y; Cao V; Liao M; Li W; Tang M; Li A; Smowton P; Seeds A; Liu H; Chen S
    Opt Lett; 2020 Oct; 45(19):5468-5471. PubMed ID: 33001927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabi splitting and optical Kerr nonlinearity of quantum dot mediated by Majorana fermions.
    Chen HJ; Wu HW
    Sci Rep; 2018 Dec; 8(1):17677. PubMed ID: 30518767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable slow light device using quantum dot semiconductor laser.
    Peng PC; Lin CT; Kuo HC; Tsai WK; Liu JN; Chi S; Wang SC; Lin G; Yang HP; Lin KF; Chi JY
    Opt Express; 2006 Dec; 14(26):12880-6. PubMed ID: 19532181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumventing the Manley-Rowe quantum efficiency limit in an optically pumped terahertz quantum-cascade amplifier.
    Waldmueller I; Wanke MC; Chow WW
    Phys Rev Lett; 2007 Sep; 99(11):117401. PubMed ID: 17930470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations.
    Unold T; Mueller K; Lienau C; Elsaesser T; Wieck AD
    Phys Rev Lett; 2004 Apr; 92(15):157401. PubMed ID: 15169317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.