These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16441055)

  • 1. Improved stabilization of a 1.3 microm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating.
    Kim K; Diddams SA; Westbrook PS; Nicholson JW; Feder KS
    Opt Lett; 2006 Jan; 31(2):277-9. PubMed ID: 16441055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser.
    Kim K; Washburn BR; Wilpers G; Oates CW; Hollberg L; Newbury NR; Diddams SA; Nicholson JW; Yan MF
    Opt Lett; 2005 Apr; 30(8):932-4. PubMed ID: 15865403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband phase-coherent optical frequency synthesis with actively linked Ti:sapphire and Cr:forsterite femtosecond lasers.
    Bartels A; Newbury NR; Thomann I; Hollberg L; Diddams SA
    Opt Lett; 2004 Feb; 29(4):403-5. PubMed ID: 14971767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term optical phase locking between femtosecond Ti:sapphire and Cr:forsterite lasers.
    Kobayashi Y; Yoshitomi D; Kakehata M; Takada H; Torizuka K
    Opt Lett; 2005 Sep; 30(18):2496-8. PubMed ID: 16196364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative carrier-envelope phase dynamics between passively synchronized Ti:sapphire and Cr:forsterite lasers.
    Wei Z; Kobayashi Y; Torizuka K
    Opt Lett; 2002 Dec; 27(23):2121-3. PubMed ID: 18033461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of relative carrier-envelope phase slip in femtosecond Ti:sapphire and Cr:forsterite lasers.
    Kobayashi Y; Torizuka K; Wei Z
    Opt Lett; 2003 May; 28(9):746-8. PubMed ID: 12747726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism.
    Tillman KA; Thapa R; Knabe K; Wu S; Lim J; Washburn BR; Corwin KL
    Appl Opt; 2009 Dec; 48(36):6980-9. PubMed ID: 20029601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circumvention of noise contributions in fiber laser based frequency combs.
    Benkler E; Telle H; Zach A; Tauser F
    Opt Express; 2005 Jul; 13(15):5662-8. PubMed ID: 19498566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passively mode-locked 10 GHz femtosecond Ti:sapphire laser.
    Bartels A; Heinecke D; Diddams SA
    Opt Lett; 2008 Aug; 33(16):1905-7. PubMed ID: 18709128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phase-stabilized carbon nanotube fiber laser frequency comb.
    Lim J; Knabe K; Tillman KA; Neely W; Wang Y; Amezcua-Correa R; Couny F; Light PS; Benabid F; Knight JC; Corwin KL; Nicholson JW; Washburn BR
    Opt Express; 2009 Aug; 17(16):14115-20. PubMed ID: 19654821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser.
    Corwin KL; Thomann I; Dennis T; Fox RW; Swann W; Curtis EA; Oates CW; Wilpers G; Bartels A; Gilbert SL; Hollberg L; Newbury NR; Diddams SA; Nicholson JW; Yan MF
    Opt Lett; 2004 Feb; 29(4):397-9. PubMed ID: 14971765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second-harmonic generation of a mode-locked fiber laser.
    Hong FL; Minoshima K; Onae A; Inaba H; Takada H; Hirai A; Matsumoto H; Sugiura T; Yoshida M
    Opt Lett; 2003 Sep; 28(17):1516-8. PubMed ID: 12956364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 350 MHz Ti:sapphire laser comb based on monolithic scheme and absolute frequency measurement of 729 nm laser.
    Zhang W; Han H; Zhao Y; Du Q; Wei Z
    Opt Express; 2009 Apr; 17(8):6059-67. PubMed ID: 19365428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser.
    Schilt S; Bucalovic N; Dolgovskiy V; Schori C; Stumpf MC; Di Domenico G; Pekarek S; Oehler AE; Südmeyer T; Keller U; Thomann P
    Opt Express; 2011 Nov; 19(24):24171-81. PubMed ID: 22109444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb.
    Heinecke DC; Bartels A; Diddams SA
    Opt Express; 2011 Sep; 19(19):18440-51. PubMed ID: 21935212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 420-MHz Cr:forsterite femtosecond ring laser and continuum generation in the 1-2-micrometre range.
    Thomann I; Bartels A; Corwin KL; Newbury NR; Hollberg L; Diddams SA; Nicholson JW; Yan MF
    Opt Lett; 2003 Aug; 28(15):1368-70. PubMed ID: 12906092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tapered semiconductor amplifiers for optical frequency combs in the near infrared.
    Cruz FC; Stowe MC; Ye J
    Opt Lett; 2006 May; 31(9):1337-9. PubMed ID: 16642104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (87)Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb.
    Schratwieser TC; Balskus K; McCracken RA; Farrell C; Leburn CG; Zhang Z; Lamour TP; Ferreiro TI; Marandi A; Arnold AS; Reid DT
    Opt Express; 2014 May; 22(9):10494-9. PubMed ID: 24921751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier-envelope offset frequency linewidth narrowing in a Cr:forsterite laser-based frequency comb.
    Wu S; Tillman K; Washburn BR; Corwin KL
    Appl Opt; 2016 Dec; 55(34):9810-9817. PubMed ID: 27958475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1-GHz harmonically pumped femtosecond optical parametric oscillator frequency comb.
    Balskus K; Leitch SM; Zhang Z; McCracken RA; Reid DT
    Opt Express; 2015 Jan; 23(2):1283-8. PubMed ID: 25835887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.