BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16441261)

  • 21. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous.
    Lake SL; Lyon H; Tantisira K; Silverman EK; Weiss ST; Laird NM; Schaid DJ
    Hum Hered; 2003; 55(1):56-65. PubMed ID: 12890927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covariance Between Genotypic Effects and its Use for Genomic Inference in Half-Sib Families.
    Wittenburg D; Teuscher F; Klosa J; Reinsch N
    G3 (Bethesda); 2016 Sep; 6(9):2761-72. PubMed ID: 27402363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficiency and power in genetic association studies.
    de Bakker PI; Yelensky R; Pe'er I; Gabriel SB; Daly MJ; Altshuler D
    Nat Genet; 2005 Nov; 37(11):1217-23. PubMed ID: 16244653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data.
    Sham PC; Cherny SS; Purcell S; Hewitt JK
    Am J Hum Genet; 2000 May; 66(5):1616-30. PubMed ID: 10762547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying the amount of missing information in genetic association studies.
    Nicolae DL
    Genet Epidemiol; 2006 Dec; 30(8):703-17. PubMed ID: 16986163
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic breeding value estimation using genetic markers, inferred ancestral haplotypes, and the genomic relationship matrix.
    de Roos AP; Schrooten C; Druet T
    J Dairy Sci; 2011 Sep; 94(9):4708-14. PubMed ID: 21854945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The importance of haplotype length and heritability using genomic selection in dairy cattle.
    Villumsen TM; Janss L; Lund MS
    J Anim Breed Genet; 2009 Feb; 126(1):3-13. PubMed ID: 19207924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haplotype-based methods for detecting uncommon causal variants with common SNPs.
    Lin WY; Yi N; Zhi D; Zhang K; Gao G; Tiwari HK; Liu N
    Genet Epidemiol; 2012 Sep; 36(6):572-82. PubMed ID: 22706849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of the entropy-based statistic for genomic association study of QTL.
    Xiang Y; Li Y; Liu Z; Sun Z
    J Genet Genomics; 2008 Mar; 35(3):183-8. PubMed ID: 18355762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SNP subset selection for genetic association studies.
    Byng MC; Whittaker JC; Cuthbert AP; Mathew CG; Lewis CM
    Ann Hum Genet; 2003 Nov; 67(Pt 6):543-56. PubMed ID: 14641242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prioritized subset analysis: improving power in genome-wide association studies.
    Li C; Li M; Lange EM; Watanabe RM
    Hum Hered; 2008; 65(3):129-41. PubMed ID: 17934316
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of multimarker logistic regression models, with application to a genomewide scan of schizophrenia.
    Wason JM; Dudbridge F
    BMC Genet; 2010 Sep; 11():80. PubMed ID: 20828390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SNPs, haplotypes, and model selection in a candidate gene region: the SIMPle analysis for multilocus data.
    Conti DV; Gauderman WJ
    Genet Epidemiol; 2004 Dec; 27(4):429-41. PubMed ID: 15543635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistically efficient association analysis of quantitative traits with haplotypes and untyped SNPs in family studies.
    Diao G; Lin DY
    BMC Genet; 2020 Sep; 21(1):99. PubMed ID: 32894040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transmission/disequilibrium tests for extended marker haplotypes.
    Clayton D; Jones H
    Am J Hum Genet; 1999 Oct; 65(4):1161-9. PubMed ID: 10486335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits.
    Haseneyer G; Stracke S; Piepho HP; Sauer S; Geiger HH; Graner A
    BMC Plant Biol; 2010 Jan; 10():5. PubMed ID: 20064201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum).
    Milner SG; Maccaferri M; Huang BE; Mantovani P; Massi A; Frascaroli E; Tuberosa R; Salvi S
    Plant Biotechnol J; 2016 Feb; 14(2):735-48. PubMed ID: 26132599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of random forest when SNPs are in linkage disequilibrium.
    Meng YA; Yu Y; Cupples LA; Farrer LA; Lunetta KL
    BMC Bioinformatics; 2009 Mar; 10():78. PubMed ID: 19265542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Joint modeling of linkage and association: identifying SNPs responsible for a linkage signal.
    Li M; Boehnke M; Abecasis GR
    Am J Hum Genet; 2005 Jun; 76(6):934-49. PubMed ID: 15877278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the power to detect SNP/phenotype association in candidate quantitative trait loci genomic regions: a simulation study.
    Comeron JM; Kreitman M; De La Vega FM
    Pac Symp Biocomput; 2003; ():478-89. PubMed ID: 12603051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.