These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 16441346)
41. Regulation of cardiac ion channels by signaling complexes: role of modified leucine zipper motifs. Hulme JT; Scheuer T; Catterall WA J Mol Cell Cardiol; 2004 Sep; 37(3):625-31. PubMed ID: 15350835 [TBL] [Abstract][Full Text] [Related]
42. Challenges and strategies for targeted phosphorylation site identification and quantification using mass spectrometry analysis. Blackburn K; Goshe MB Brief Funct Genomic Proteomic; 2009 Mar; 8(2):90-103. PubMed ID: 19109306 [TBL] [Abstract][Full Text] [Related]
43. Biomarker discovery for kidney diseases by mass spectrometry. Niwa T J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jul; 870(2):148-53. PubMed ID: 18024247 [TBL] [Abstract][Full Text] [Related]
44. Kinomics: methods for deciphering the kinome. Johnson SA; Hunter T Nat Methods; 2005 Jan; 2(1):17-25. PubMed ID: 15789031 [TBL] [Abstract][Full Text] [Related]
47. Use of immunocomplexed substrate for detecting PP1 activity. Ludlow JW; Nelson DA; Krucher NA Methods Mol Biol; 1998; 93():137-43. PubMed ID: 9664532 [No Abstract] [Full Text] [Related]
48. In-Gel Protein Phosphatase Assay Using Fluorogenic Substrates. Kameshita I; Sueyoshi N; Ishida A Methods Mol Biol; 2018; 1853():165-172. PubMed ID: 30097942 [TBL] [Abstract][Full Text] [Related]
49. Phosphorylation of wheat germ ribosomes in vitro by wheat germ protein kinase. Chroboczek J; Madjar JJ; Rychlik W; Zagórski W Acta Biochim Pol; 1982; 29(1-2):135-41. PubMed ID: 7180323 [No Abstract] [Full Text] [Related]
50. Protein phosphorylation in plants: enzymes, substrates and regulators. Ma H Trends Genet; 1993 Jul; 9(7):228-30. PubMed ID: 8397456 [No Abstract] [Full Text] [Related]
51. The use of erythrocytic and animal models in the study of protein phosphorylation. Bordin L; Coleman MD; Clari G Environ Toxicol Pharmacol; 2006 Feb; 21(2):148-52. PubMed ID: 21783652 [TBL] [Abstract][Full Text] [Related]
52. Modification of an in situ renaturation method for analysis of protein kinase activity with multiple substrates. Fox TC; Rumpho ME Biotechniques; 1997 Oct; 23(4):652-4, 657. PubMed ID: 9343686 [No Abstract] [Full Text] [Related]
54. Hitting the target: emerging technologies in the search for kinase substrates. Manning BD; Cantley LC Sci STKE; 2002 Dec; 2002(162):pe49. PubMed ID: 12475999 [TBL] [Abstract][Full Text] [Related]
55. Recent Advances in Substrate Identification of Protein Kinases in Plants and Their Role in Stress Management. Jha SK; Malik S; Sharma M; Pandey A; Pandey GK Curr Genomics; 2017 Dec; 18(6):523-541. PubMed ID: 29204081 [TBL] [Abstract][Full Text] [Related]
56. Experimental tools for the study of protein phosphorylation in Plasmodium. Dorin-Semblat D; Bottrill AR; Solyakov L; Tobin A; Doerig C Methods Mol Biol; 2013; 923():241-57. PubMed ID: 22990782 [TBL] [Abstract][Full Text] [Related]
57. Jasplakinolide: an actin-specific reagent that promotes actin polymerization. Holzinger A Methods Mol Biol; 2009; 586():71-87. PubMed ID: 19768425 [TBL] [Abstract][Full Text] [Related]
58. Driving the cell cycle with a minimal CDK control network. Coudreuse D; Nurse P Nature; 2010 Dec; 468(7327):1074-9. PubMed ID: 21179163 [TBL] [Abstract][Full Text] [Related]
59. Mechanism of action of cytochalasin B on actin. MacLean-Fletcher S; Pollard TD Cell; 1980 Jun; 20(2):329-41. PubMed ID: 6893016 [TBL] [Abstract][Full Text] [Related]
60. Microtubule-microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in Drosophila oocytes. Lu W; Winding M; Lakonishok M; Wildonger J; Gelfand VI Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4995-5004. PubMed ID: 27512034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]