BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 16441347)

  • 1. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status.
    Verslues PE; Agarwal M; Katiyar-Agarwal S; Zhu J; Zhu JK
    Plant J; 2006 Feb; 45(4):523-39. PubMed ID: 16441347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of soybean GmbZIP132 under abscisic acid and salt stresses.
    Liao Y; Zhang JS; Chen SY; Zhang WK
    J Integr Plant Biol; 2008 Feb; 50(2):221-30. PubMed ID: 18713445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.
    Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY
    Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic analysis of Arabidopsis mutants: root elongation under salt/hormone-induced stress.
    Lee BH; Zhu JK
    Cold Spring Harb Protoc; 2009 Nov; 2009(11):pdb.prot4968. PubMed ID: 20150051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants.
    Cho SK; Kim JE; Park JA; Eom TJ; Kim WT
    FEBS Lett; 2006 May; 580(13):3136-44. PubMed ID: 16684525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling abiotic stress tolerance mechanisms--getting genomics going.
    Bohnert HJ; Gong Q; Li P; Ma S
    Curr Opin Plant Biol; 2006 Apr; 9(2):180-8. PubMed ID: 16458043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.
    Vinocur B; Altman A
    Curr Opin Biotechnol; 2005 Apr; 16(2):123-32. PubMed ID: 15831376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt tolerance and salinity effects on plants: a review.
    Parida AK; Das AB
    Ecotoxicol Environ Saf; 2005 Mar; 60(3):324-49. PubMed ID: 15590011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress.
    Kwak KJ; Kim JY; Kim YO; Kang H
    Plant Cell Physiol; 2007 Feb; 48(2):221-31. PubMed ID: 17169924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture.
    Chaves MM; Oliveira MM
    J Exp Bot; 2004 Nov; 55(407):2365-84. PubMed ID: 15475377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants.
    Brini F; Hanin M; Mezghani I; Berkowitz GA; Masmoudi K
    J Exp Bot; 2007; 58(2):301-8. PubMed ID: 17229760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold, salinity and drought stresses: an overview.
    Mahajan S; Tuteja N
    Arch Biochem Biophys; 2005 Dec; 444(2):139-58. PubMed ID: 16309626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions.
    Kim JY; Park SJ; Jang B; Jung CH; Ahn SJ; Goh CH; Cho K; Han O; Kang H
    Plant J; 2007 May; 50(3):439-51. PubMed ID: 17376161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice.
    Xiang Y; Tang N; Du H; Ye H; Xiong L
    Plant Physiol; 2008 Dec; 148(4):1938-52. PubMed ID: 18931143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions.
    Kim YO; Pan S; Jung CH; Kang H
    Plant Cell Physiol; 2007 Aug; 48(8):1170-81. PubMed ID: 17602187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice.
    Nakashima K; Tran LS; Van Nguyen D; Fujita M; Maruyama K; Todaka D; Ito Y; Hayashi N; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2007 Aug; 51(4):617-30. PubMed ID: 17587305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress.
    Ben Hassine A; Ghanem ME; Bouzid S; Lutts S
    J Exp Bot; 2008; 59(6):1315-26. PubMed ID: 18385490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance.
    Vashisht AA; Tuteja N
    J Photochem Photobiol B; 2006 Aug; 84(2):150-60. PubMed ID: 16624568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana.
    Ding Z; Li S; An X; Liu X; Qin H; Wang D
    J Genet Genomics; 2009 Jan; 36(1):17-29. PubMed ID: 19161942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.