These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16441375)

  • 61. Medical applications of electronic nose technology: review of current status.
    Thaler ER; Kennedy DW; Hanson CW
    Am J Rhinol; 2001; 15(5):291-5. PubMed ID: 11732813
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data.
    Giacomini M; Ruggiero C; Calegari L; Bertone S
    J Microbiol Methods; 2000 Dec; 43(1):45-54. PubMed ID: 11084227
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pyelonephritis: a study of bacteriological techniques. II. The identification and incidence of micro-organisms associated with pyelonephritis.
    Wallace ET
    J Med Lab Technol; 1965 Oct; 22(4):216-9. PubMed ID: 5319644
    [No Abstract]   [Full Text] [Related]  

  • 64. Drift compensation on electronic nose data for non-invasive diagnosis of prostate cancer by urine analysis.
    Bax C; Prudenza S; Gaspari G; Capelli L; Grizzi F; Taverna G
    iScience; 2022 Jan; 25(1):103622. PubMed ID: 35024578
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The nutrition of micro-organisms.
    CUTHBERTSON WF
    Lect Sci Basis Med; 1955-1956; 5():285-96. PubMed ID: 13476765
    [No Abstract]   [Full Text] [Related]  

  • 66. The volatile molecular profiles of seven Streptococcus pneumoniae serotypes.
    Mellors TR; Rees CA; Franchina FA; Burklund A; Patel C; Hathaway LJ; Hill JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Oct; 1096():208-213. PubMed ID: 30179753
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification and Antibiotic-Susceptibility Profiling of Infectious Bacterial Agents: A Review of Current and Future Trends.
    Maugeri G; Lychko I; Sobral R; Roque ACA
    Biotechnol J; 2019 Jan; 14(1):e1700750. PubMed ID: 30024110
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Machine learning for the meta-analyses of microbial pathogens' volatile signatures.
    Palma SICJ; Traguedo AP; Porteira AR; Frias MJ; Gamboa H; Roque ACA
    Sci Rep; 2018 Feb; 8(1):3360. PubMed ID: 29463885
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.
    Shrestha NK; Lim SH; Wilson DA; SalasVargas AV; Churi YS; Rhodes PA; Mazzone PJ; Procop GW
    PLoS One; 2017; 12(3):e0173130. PubMed ID: 28296967
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated and Mechanically-Ventilated Intensive Care Unit (ICU)-Patients.
    van Oort PM; de Bruin S; Weda H; Knobel HH; Schultz MJ; Bos LD; On Behalf Of The Mars Consortium
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28218729
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Detection of Airway Colonization by Aspergillus fumigatus by Use of Electronic Nose Technology in Patients with Cystic Fibrosis.
    de Heer K; Kok MG; Fens N; Weersink EJ; Zwinderman AH; van der Schee MP; Visser CE; van Oers MH; Sterk PJ
    J Clin Microbiol; 2016 Mar; 54(3):569-75. PubMed ID: 26677251
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The use of colorimetric sensor arrays to discriminate between pathogenic bacteria.
    Lonsdale CL; Taba B; Queralto N; Lukaszewski RA; Martino RA; Rhodes PA; Lim SH
    PLoS One; 2013; 8(5):e62726. PubMed ID: 23671629
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study.
    de Heer K; van der Schee MP; Zwinderman K; van den Berk IA; Visser CE; van Oers R; Sterk PJ
    J Clin Microbiol; 2013 May; 51(5):1490-5. PubMed ID: 23467602
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Advances in electronic-nose technologies developed for biomedical applications.
    Wilson AD; Baietto M
    Sensors (Basel); 2011; 11(1):1105-76. PubMed ID: 22346620
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rapid identification of bacteria with a disposable colorimetric sensing array.
    Carey JR; Suslick KS; Hulkower KI; Imlay JA; Imlay KR; Ingison CK; Ponder JB; Sen A; Wittrig AE
    J Am Chem Soc; 2011 May; 133(19):7571-6. PubMed ID: 21524080
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predicting the receptive range of olfactory receptors.
    Haddad R; Carmel L; Sobel N; Harel D
    PLoS Comput Biol; 2008 Feb; 4(2):e18. PubMed ID: 18248088
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fast identification of ten clinically important micro-organisms using an electronic nose.
    Moens M; Smet A; Naudts B; Verhoeven J; Ieven M; Jorens P; Geise HJ; Blockhuys F
    Lett Appl Microbiol; 2006 Feb; 42(2):121-6. PubMed ID: 16441375
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Species and strain identification of lactic acid bacteria using FTIR spectroscopy and artificial neural networks.
    Wenning M; Büchl NR; Scherer S
    J Biophotonics; 2010 Aug; 3(8-9):493-505. PubMed ID: 20422658
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electronic nose based tea quality standardization.
    Dutta R; Kashwan KR; Bhuyan M; Hines EL; Gardner JW
    Neural Netw; 2003; 16(5-6):847-53. PubMed ID: 12850043
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genus-wide Bacillus species identification through proper artificial neural network experiments on fatty acid profiles.
    Slabbinck B; De Baets B; Dawyndt P; De Vos P
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):187-98. PubMed ID: 18322819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.