BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 1644194)

  • 1. Quenching of bacteriochlorophyll
    Yakovlev AG; Taisova AS
    Phys Chem Chem Phys; 2024 Mar; 26(11):8815-8823. PubMed ID: 38421198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and Theoretical Mutation of Exciton States on the Smallest Type-I Photosynthetic Reaction Center Complex of a Green Sulfur Bacterium
    Kimura A; Kitoh-Nishioka H; Kondo T; Oh-Oka H; Itoh S; Azai C
    J Phys Chem B; 2024 Jan; 128(3):731-743. PubMed ID: 38198639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting packing modes for tubular assemblies in chlorosomes.
    Miloslavina YA; Thomas B; Reus M; Gupta KBSS; Oostergetel GT; Andreas LB; Holzwarth AR; de Groot HJM
    Photosynth Res; 2024 Mar; ():. PubMed ID: 38538911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability of aggregation extent of light-harvesting pigments in peripheral antenna of Chloroflexus aurantiacus.
    Yakovlev A; Taisova A; Arutyunyan A; Shuvalov V; Fetisova Z
    Photosynth Res; 2017 Sep; 133(1-3):343-356. PubMed ID: 28361448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the excitonic states of individual chlorosomes from Chlorobaculum tepidum.
    Jendrny M; Aartsma TJ; Köhler J
    Biophys J; 2014 May; 106(9):1921-7. PubMed ID: 24806924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature spectroscopy of bacteriochlorophyll c aggregates.
    Paleček D; Dědic R; Alster J; Hála J
    Photosynth Res; 2014 Mar; 119(3):331-8. PubMed ID: 24318566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strongly exciton-coupled BChle chromophore system in the chlorosomal antenna of intact cells of the green bacteriumChlorobium phaeovibrioides: A spectral hole burning study.
    Fetisova ZG; Mauring K; Taisova AS
    Photosynth Res; 1994 Jul; 41(1):205-10. PubMed ID: 24310027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular organization of bacteriochlorophyll in chlorosomes of the green photosynthetic bacteriumChloroflexus aurantiacus: Studies of fluorescence depolarization accompanied by energy transfer processes.
    Mimuro M; Hirota M; Nishimura Y; Moriyama T; Yamazaki I; Shimada K; Matsuura K
    Photosynth Res; 1994 Jul; 41(1):181-91. PubMed ID: 24310025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hole burning study of excited state structure and energy transfer dynamics of bacteriochlorophyll c in chlorosomes of green sulphur photosynthetic bacteria.
    P Sen Cík J; Vácha M; Adamec FS; Ambro Z M; Dian J; Bo Cek J; Hála J
    Photosynth Res; 1994 Oct; 42(1):1-8. PubMed ID: 24307462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tubular exciton models for BChl c antennae in chlorosomes from green photosynthetic bacteria.
    Buck DR; Struve WS
    Photosynth Res; 1996 Jun; 48(3):367-77. PubMed ID: 24271477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates.
    Linnanto JM; Korppi-Tommola JE
    Photosynth Res; 2008 Jun; 96(3):227-45. PubMed ID: 18443917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature fluorescence from single chlorosomes, photosynthetic antenna complexes of green filamentous and sulfur bacteria.
    Shibata Y; Saga Y; Tamiaki H; Itoh S
    Biophys J; 2006 Nov; 91(10):3787-96. PubMed ID: 16950839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus: experimental and theoretical studies of femtosecond pump-probe spectra.
    Yakovlev A; Novoderezhkin V; Taisova A; Fetisova Z
    Photosynth Res; 2002; 71(1-2):19-32. PubMed ID: 16228498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides.
    Psencík J; Ma YZ; Arellano JB; Hála J; Gillbro T
    Biophys J; 2003 Feb; 84(2 Pt 1):1161-79. PubMed ID: 12547796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum.
    Prokhorenko VI; Steensgaard DB; Holzwarth AR
    Biophys J; 2000 Oct; 79(4):2105-20. PubMed ID: 11023914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum.
    Wu HM; Rätsep M; Young CS; Jankowiak R; Blankenship RE; Small GJ
    Biophys J; 2000 Sep; 79(3):1561-72. PubMed ID: 10969017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies.
    Fetisova Z; Freiberg A; Mauring K; Novoderezhkin V; Taisova A; Timpmann K
    Biophys J; 1996 Aug; 71(2):995-1010. PubMed ID: 8842237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning.
    Fetisova ZG; Mauring K
    FEBS Lett; 1992 Aug; 307(3):371-4. PubMed ID: 1644194
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.