BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1644194)

  • 21. Resonance Raman studies on the structure of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus.
    Nozawa T; Noguchi T; Tasumi M
    J Biochem; 1990 Nov; 108(5):737-40. PubMed ID: 2081732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exciton delocalization in the B808-866 antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy.
    Novoderezhkin V; Fetisova Z
    Biophys J; 1999 Jul; 77(1):424-30. PubMed ID: 10388768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light control over the size of an antenna unit building block as an efficient strategy for light harvesting in photosynthesis.
    Yakovlev AG; Taisova AS; Fetisova ZG
    FEBS Lett; 2002 Feb; 512(1-3):129-32. PubMed ID: 11852066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Picosecond energy transfer and trapping kinetics in living cells of the green bacterium Chloroflexus aurantiacus.
    Müller MG; Griebenow K; Holzwarth AR
    Biochim Biophys Acta; 1993 Sep; 1144(2):161-9. PubMed ID: 8369334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna.
    Frigaard N; Tokita S; Matsuura K
    Biochim Biophys Acta; 1999 Nov; 1413(3):108-16. PubMed ID: 10556623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148396. PubMed ID: 33581107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus.
    Novoderezhkin VI; Taisova AS; Fetisova ZG; Blankenship RE; Savikhin S; Buck DR; Struve WS
    Biophys J; 1998 Apr; 74(4):2069-75. PubMed ID: 9545065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus.
    Brune DC; King GH; Infosino A; Steiner T; Thewalt ML; Blankenship RE
    Biochemistry; 1987 Dec; 26(26):8652-8. PubMed ID: 3442680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy transfer and charge separation in the purple non-sulfur bacterium Roseospirillum parvum.
    Permentier HP; Neerken S; Schmidt KA; Overmann J; Amesz J
    Biochim Biophys Acta; 2000 Nov; 1460(2-3):338-45. PubMed ID: 11106774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus : I. The cytoplasmic membrane.
    Vasmel H; Van Dorssen RJ; De Vos GJ; Amesz J
    Photosynth Res; 1986 Jan; 7(3):281-94. PubMed ID: 24443124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Presence and significance of minor antenna components in the energy transfer sequence of the green photosynthetic bacterium Chloroflexus aurantiacus.
    Mimuro M; Nozawa T; Tamai N; Nishimura Y; Yamazaki I
    FEBS Lett; 1994 Mar; 340(3):167-72. PubMed ID: 8131839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and protein binding interactions of the primary donor of the Chloroflexus aurantiacus reaction center.
    Ivancich A; Feick R; Ertlmaier A; Mattioli TA
    Biochemistry; 1996 May; 35(19):6126-35. PubMed ID: 8634255
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast excited-state dynamics in chlorosomes isolated from the photosynthetic filamentous green bacterium Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Shuvalov VA; Fetisova ZG
    Physiol Plant; 2019 May; 166(1):12-21. PubMed ID: 30499123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-Frequency Oscillations of Bacteriochlorophyll Oligomers in Chlorosomes of Photosynthetic Green Bacteria.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Biochemistry (Mosc); 2023 Dec; 88(12):2084-2093. PubMed ID: 38462452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. III. Energy transfer in whole cells.
    van Dorssen RJ; Amesz J
    Photosynth Res; 1988 Feb; 15(2):177-89. PubMed ID: 24430862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and characterization of the B808-866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus.
    Xin Y; Lin S; Montaño GA; Blankenship RE
    Photosynth Res; 2005 Nov; 86(1-2):155-63. PubMed ID: 16172935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [A study of the content of pigments in the light-harvesting antenna of the green bacterium from the new family Oscillochloridaceae].
    Taisova AS; Keppen OI; Fetisova ZG
    Biofizika; 2004; 49(6):1069-74. PubMed ID: 15612548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity.
    Taisova AS; Yakovlev AG; Fetisova ZG
    Biochemistry (Mosc); 2014 Mar; 79(3):251-9. PubMed ID: 24821452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic Stark effect in β and γ carotenes induced by photoexcitation of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus.
    Yakovlev AG; Taisova AS; Fetisova ZG
    Photosynth Res; 2022 Dec; 154(3):291-302. PubMed ID: 36115930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functioning of oligomeric-type light-harvesting antenna.
    Timpmann KE; Taisova AS; Novoderezhkin VI; Fetisova ZG
    Biochem Mol Biol Int; 1997 Jun; 42(1):21-7. PubMed ID: 9192081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.