These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1644219)

  • 1. E-cadherin expression in a particular subset of sensory neurons.
    Shimamura K; Takahashi T; Takeichi M
    Dev Biol; 1992 Aug; 152(2):242-54. PubMed ID: 1644219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoelectron microscopic localization of E-cadherin in dorsal root ganglia, dorsal root and dorsal horn of postnatal mice.
    Uchiyama N; Hasegawa M; Yamashima T; Yamashita J; Shimamura K; Takeichi M
    J Neurocytol; 1994 Aug; 23(8):460-8. PubMed ID: 7527073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-/R-cadherin expression in dorsal root ganglia and spinal cord.
    Shibuya Y; Takeuchi J; Kobayashi M; Murata M; Munemoto S; Yokoo S; Umeda M; Komori T
    Kobe J Med Sci; 2005; 51(3-4):35-40. PubMed ID: 16421455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pax3-expressing trigeminal placode cells can localize to trunk neural crest sites but are committed to a cutaneous sensory neuron fate.
    Baker CV; Stark MR; Bronner-Fraser M
    Dev Biol; 2002 Sep; 249(2):219-36. PubMed ID: 12221003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient expression of somatostatin peptide is a widespread feature of developing sensory and sympathetic neurons in the embryonic rat.
    Katz DM; He H; White M
    J Neurobiol; 1992 Sep; 23(7):855-70. PubMed ID: 1359005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadherin-8 is required for the first relay synapses to receive functional inputs from primary sensory afferents for cold sensation.
    Suzuki SC; Furue H; Koga K; Jiang N; Nohmi M; Shimazaki Y; Katoh-Fukui Y; Yokoyama M; Yoshimura M; Takeichi M
    J Neurosci; 2007 Mar; 27(13):3466-76. PubMed ID: 17392463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic expression pattern of leucine-rich repeat neuronal protein 4 in the mouse dorsal root ganglia during development.
    Bando T; Morikawa Y; Hisaoka T; Komori T; Miyajima A; Senba E
    Neurosci Lett; 2013 Aug; 548():73-8. PubMed ID: 23701859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonic sensory development: local expression of neurotrophin-3 and target expression of nerve growth factor.
    Elkabes S; Dreyfus CF; Schaar DG; Black IB
    J Comp Neurol; 1994 Mar; 341(2):204-13. PubMed ID: 8163724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia.
    Knabe W; Sirén AL; Ehrenreich H; Kuhn HJ
    Anat Embryol (Berl); 2005 Oct; 210(3):209-19. PubMed ID: 16151855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. POU-domain factor Brn3a regulates both distinct and common programs of gene expression in the spinal and trigeminal sensory ganglia.
    Eng SR; Dykes IM; Lanier J; Fedtsova N; Turner EE
    Neural Dev; 2007 Jan; 2():3. PubMed ID: 17239249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptides and neurotrophin receptor mRNAs in primary sensory neurons of aged rats.
    Bergman E; Johnson H; Zhang X; Hökfelt T; Ulfhake B
    J Comp Neurol; 1996 Nov; 375(2):303-19. PubMed ID: 8915832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricted expression of N- and R-cadherin on neurites of the developing chicken CNS.
    Redies C; Inuzuka H; Takeichi M
    J Neurosci; 1992 Sep; 12(9):3525-34. PubMed ID: 1527594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans.
    Josephson A; Trifunovski A; Widmer HR; Widenfalk J; Olson L; Spenger C
    J Comp Neurol; 2002 Nov; 453(3):292-304. PubMed ID: 12378589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of immunoreactivity for calcitonin gene-related peptide, substance P and glutamate in primary sensory neurons, and for serotonin in the spinal cord of fetal sheep.
    Nitsos I; Rees S
    Neuroscience; 1993 May; 54(1):239-52. PubMed ID: 7685861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sensory innervation of the mouse spinal cord may be patterned by differential expression of and differential responsiveness to semaphorins.
    Püschel AW; Adams RH; Betz H
    Mol Cell Neurosci; 1996 May; 7(5):419-31. PubMed ID: 8812066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latexin expression in smaller diameter primary sensory neurons in the rat.
    Takiguchi-Hayashi K; Sato M; Sugo N; Ishida M; Sato K; Uratani Y; Arimatsu Y
    Brain Res; 1998 Aug; 801(1-2):9-20. PubMed ID: 9729242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cues intrinsic to the spinal cord determine the pattern and timing of primary afferent growth.
    Redmond L; Xie H; Ziskind-Conhaim L; Hockfield S
    Dev Biol; 1997 Feb; 182(2):205-18. PubMed ID: 9070322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteocalcin-immunoreactive primary sensory neurons in the rat spinal and trigeminal nervous systems.
    Ichikawa H; Itota T; Torii Y; Inoue K; Sugimoto T
    Brain Res; 1999 Aug; 838(1-2):205-9. PubMed ID: 10446334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SSeCKS immunolabeling in rat primary sensory neurons.
    Siegel SM; Grove BD; Carr PA
    Brain Res; 2002 Feb; 926(1-2):126-36. PubMed ID: 11814414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia.
    Zhang JH; Morita Y; Hironaka T; Emson PC; Tohyama M
    J Comp Neurol; 1990 Dec; 302(4):715-28. PubMed ID: 2081815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.