These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16442654)

  • 1. Total amino acid stabilization during cell-free protein synthesis reactions.
    Calhoun KA; Swartz JR
    J Biotechnol; 2006 May; 123(2):193-203. PubMed ID: 16442654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome.
    Michel-Reydellet N; Calhoun K; Swartz J
    Metab Eng; 2004 Jul; 6(3):197-203. PubMed ID: 15256209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate replenishment extends protein synthesis with an in vitro translation system designed to mimic the cytoplasm.
    Jewett MC; Swartz JR
    Biotechnol Bioeng; 2004 Aug; 87(4):465-72. PubMed ID: 15286983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonging cell-free protein synthesis by selective reagent additions.
    Kim DM; Swartz JR
    Biotechnol Prog; 2000; 16(3):385-90. PubMed ID: 10835240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energizing cell-free protein synthesis with glucose metabolism.
    Calhoun KA; Swartz JR
    Biotechnol Bioeng; 2005 Jun; 90(5):606-13. PubMed ID: 15830344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removing tRNA from a cell-free protein synthesis system for use in protein production.
    Kanda T; Takai K; Yokoyama S; Takaku H
    Nucleic Acids Symp Ser; 1997; (37):319-20. PubMed ID: 9586128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids.
    Short GF; Golovine SY; Hecht SM
    Biochemistry; 1999 Jul; 38(27):8808-19. PubMed ID: 10393557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing PCR fragment stability and protein yields in a cell-free system with genetically modified Escherichia coli extracts.
    Michel-Reydellet N; Woodrow K; Swartz J
    J Mol Microbiol Biotechnol; 2005; 9(1):26-34. PubMed ID: 16254443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational improvement of cell-free protein synthesis.
    Pedersen A; Hellberg K; Enberg J; Karlsson BG
    N Biotechnol; 2011 Apr; 28(3):218-24. PubMed ID: 20603235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-free protein preparation through prokaryotic transcription-translation methods.
    Kigawa T
    Methods Mol Biol; 2010; 607():1-10. PubMed ID: 20204843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic profiling of Escherichia coli proteins under high cell density fed-batch cultivation with overexpression of phosphogluconolactonase.
    Wang Y; Wu SL; Hancock WS; Trala R; Kessler M; Taylor AH; Patel PS; Aon JC
    Biotechnol Prog; 2005; 21(5):1401-11. PubMed ID: 16209543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in the cell-free production of functional antibodies using cell extract from protease-deficient Escherichia coli mutant.
    Ali M; Suzuki H; Fukuba T; Jiang X; Nakano H; Yamane T
    J Biosci Bioeng; 2005 Feb; 99(2):181-6. PubMed ID: 16233776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids.
    Goerke AR; Swartz JR
    Biotechnol Bioeng; 2009 Feb; 102(2):400-16. PubMed ID: 18781689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system.
    Taira H; Hohsaka T; Sisido M
    Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and scalable method for scaling up cell free protein synthesis in batch mode.
    Voloshin AM; Swartz JR
    Biotechnol Bioeng; 2005 Aug; 91(4):516-21. PubMed ID: 15937883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous-exchange cell-free protein synthesis using PCR-generated DNA and an RNase E-deficient extract.
    Jun SY; Kang SH; Lee KH
    Biotechniques; 2008 Mar; 44(3):387-91. PubMed ID: 18361792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-free synthesis of 15N-labeled proteins for NMR studies.
    Ozawa K; Dixon NE; Otting G
    IUBMB Life; 2005 Sep; 57(9):615-22. PubMed ID: 16203680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple-site labeling of proteins with unnatural amino acids.
    Loscha KV; Herlt AJ; Qi R; Huber T; Ozawa K; Otting G
    Angew Chem Int Ed Engl; 2012 Feb; 51(9):2243-6. PubMed ID: 22298420
    [No Abstract]   [Full Text] [Related]  

  • 20. Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression.
    Van Dien SJ; Iwatani S; Usuda Y; Matsui K
    J Biosci Bioeng; 2006 Jul; 102(1):34-40. PubMed ID: 16952834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.