These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16442676)

  • 1. Force-plate based computation of ankle and hip strategies from double-inverted pendulum model.
    Colobert B; Crétual A; Allard P; Delamarche P
    Clin Biomech (Bristol); 2006 May; 21(4):427-34. PubMed ID: 16442676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All leg joints contribute to quiet human stance: a mechanical analysis.
    Günther M; Grimmer S; Siebert T; Blickhan R
    J Biomech; 2009 Dec; 42(16):2739-46. PubMed ID: 19772965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the hip motion on the body kinematics in the sagittal plane during human quiet standing.
    Sasagawa S; Ushiyama J; Kouzaki M; Kanehisa H
    Neurosci Lett; 2009 Jan; 450(1):27-31. PubMed ID: 19027828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of the ankle strategy under translational platform disturbance.
    Hemami H; Barin K; Pai YC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):470-80. PubMed ID: 17190038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance.
    Pinter IJ; van Swigchem R; van Soest AJ; Rozendaal LA
    J Neurophysiol; 2008 Dec; 100(6):3197-208. PubMed ID: 18829852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the lambda model for human postural control during ankle strategy.
    Micheau P; Kron A; Bourassa P
    Biol Cybern; 2003 Sep; 89(3):227-36. PubMed ID: 14504941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A link-segment model of upright human posture for analysis of head-trunk coordination.
    Nicholas SC; Doxey-Gasway DD; Paloski WH
    J Vestib Res; 1998; 8(3):187-200. PubMed ID: 9626646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional kinematic and dynamic study of the lower limb during the stance phase of gait using an homogeneous matrix approach.
    Doriot N; Chèze L
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):21-7. PubMed ID: 14723490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    J Biomech; 2012 May; 45(8):1472-7. PubMed ID: 22405496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Displacement of center of pressure on the support and changes of the joint angles of the lower extremity at squatting].
    Khorievin VI; Horkovenko AV; Vereshchaka IV
    Fiziol Zh (1994); 2012; 58(3):32-42. PubMed ID: 22946311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance control during an arm raising movement in bipedal stance: which biomechanical factor is controlled?
    Ferry M; Martin L; Termoz N; Côté J; Prince F
    Biol Cybern; 2004 Aug; 91(2):104-14. PubMed ID: 15338215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model.
    Suzuki Y; Nomura T; Casadio M; Morasso P
    J Theor Biol; 2012 Oct; 310():55-79. PubMed ID: 22732276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EquiTest modification with shank and hip angle measurements: differences with age among normal subjects.
    Speers RA; Shepard NT; Kuo AD
    J Vestib Res; 1999; 9(6):435-44. PubMed ID: 10639028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of altering neural, muscular and tendinous factors associated with aging on balance recovery using the ankle strategy: a simulation study.
    Barrett RS; Lichtwark GA
    J Theor Biol; 2008 Oct; 254(3):546-54. PubMed ID: 18639557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two kinematic synergies in voluntary whole-body movements during standing.
    Freitas SM; Duarte M; Latash ML
    J Neurophysiol; 2006 Feb; 95(2):636-45. PubMed ID: 16267118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the 3D inverse dynamic method on the joint forces and moments during gait.
    Dumas R; Nicol E; Chèze L
    J Biomech Eng; 2007 Oct; 129(5):786-90. PubMed ID: 17887905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation-dependent selection of postural feedback gain and its scaling.
    Kim S; Atkeson CG; Park S
    J Biomech; 2012 May; 45(8):1379-86. PubMed ID: 22444347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How postural behaviour in undisturbed upright stance can be used to assess the physical characteristics of various models of ankle orthoses.
    Rougier P; Burdet C; Farenc I; Berger L
    Clin Biomech (Bristol); 2004 Jun; 19(5):497-505. PubMed ID: 15182985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing on a narrow ridge: biomechanics and control.
    Otten E
    Philos Trans R Soc Lond B Biol Sci; 1999 May; 354(1385):869-75. PubMed ID: 10382221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.