These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16442681)

  • 41. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.
    Jensen J; Larsen MM; Bak J
    Environ Pollut; 2016 Jul; 214():334-340. PubMed ID: 27107257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial activity in pig slurry-amended soils under aerobic incubation.
    Plaza C; García-Gil JC; Polo A
    Biodegradation; 2007 Apr; 18(2):159-65. PubMed ID: 16758274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Composition of organic matter in particle size fractionated pig slurry.
    Aust MO; Thiele-Bruhn S; Eckhardt KU; Leinweber P
    Bioresour Technol; 2009 Dec; 100(23):5736-43. PubMed ID: 19604689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Remediation of metal contaminated soil with mineral-amended composts.
    van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK
    Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enrichment of marsh soils with heavy metals by effect of anthropic pollution.
    Vega FA; Covelo EF; Cerqueira B; Andrade ML
    J Hazard Mater; 2009 Oct; 170(2-3):1056-63. PubMed ID: 19525065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The growth and Cu and Zn uptake of pakchois (Brassica chinesis L.) in an acidic soil as affected by chicken or pig manure.
    Hao X; Zhou D; Huang D; Zhang H; Wang Y
    J Environ Sci Health B; 2007 Nov; 42(8):905-12. PubMed ID: 17978959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures].
    Shang HP; Li Y; Zhang T; Su DC
    Huan Jing Ke Xue; 2015 Jan; 36(1):314-24. PubMed ID: 25898681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Organic matter in degraded agricultural soils amended with composted and thermally-dried sewage sludges.
    Fernández JM; Hernández D; Plaza C; Polo A
    Sci Total Environ; 2007 May; 378(1-2):75-80. PubMed ID: 17307239
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of copper speciation in pig slurry by a multitechnique approach.
    Legros S; Chaurand P; Rose J; Masion A; Briois V; Ferrasse JH; Macary HS; Bottero JY; Doelsch E
    Environ Sci Technol; 2010 Sep; 44(18):6926-32. PubMed ID: 20735047
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficiency of use of imported magnesium, sulfur, copper, and zinc on Idaho dairy farms.
    Hristov AN; Hazen W; Ellsworth JW
    J Dairy Sci; 2007 Jun; 90(6):3034-43. PubMed ID: 17517746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cu and Zn mobilization in soil columns percolated by different irrigation solutions.
    Zhao LY; Schulin R; Nowack B
    Environ Pollut; 2009 Mar; 157(3):823-33. PubMed ID: 19111374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry.
    Legros S; Doelsch E; Masion A; Rose J; Borschneck D; Proux O; Hazemann JL; Saint-Macary H; Bottero JY
    J Environ Qual; 2010; 39(2):531-40. PubMed ID: 20176826
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry.
    Girotto E; Ceretta CA; Rossato LV; Farias JG; Tiecher TL; De Conti L; Schmatz R; Brunetto G; Schetinger MR; Nicoloso FT
    Ecotoxicol Environ Saf; 2013 Jul; 93():145-55. PubMed ID: 23669342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monitoring the variability of zinc and copper in surface soils from central Greece.
    Golia EE; Floras SA; Dimirkou A
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):6-10. PubMed ID: 18651088
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transversal immission patterns and leachability of heavy metals in road side soils.
    Hjortenkrans DS; Bergbäck BG; Häggerud AV
    J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tracing contamination sources in soils with Cu and Zn isotopic ratios.
    Fekiacova Z; Cornu S; Pichat S
    Sci Total Environ; 2015 Jun; 517():96-105. PubMed ID: 25723961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals.
    Chien SW; Wang MC; Huang CC; Seshaiah K
    J Agric Food Chem; 2007 Jun; 55(12):4820-7. PubMed ID: 17497878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.