BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 16442684)

  • 1. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.
    Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revised assessment of cancer risk to dichloromethane II. Application of probabilistic methods to cancer risk determinations.
    David RM; Clewell HJ; Gentry PR; Covington TR; Morgott DA; Marino DJ
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):55-65. PubMed ID: 16439044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans.
    El-Masri HA; Bell DA; Portier CJ
    Toxicol Appl Pharmacol; 1999 Aug; 158(3):221-30. PubMed ID: 10438655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian analysis of the influence of GSTT1 polymorphism on the cancer risk estimate for dichloromethane.
    Jonsson F; Johanson G
    Toxicol Appl Pharmacol; 2001 Jul; 174(2):99-112. PubMed ID: 11446825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically-based pharmacokinetic and toxicokinetic models in cancer risk assessment.
    Krishnan K; Johanson G
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2005; 23(1):31-53. PubMed ID: 16291521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice.
    Evans MV; Caldwell JC
    Toxicol Appl Pharmacol; 2010 May; 244(3):280-90. PubMed ID: 20153349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment.
    Clewell HJ; Gentry PR; Gearhart JM
    J Toxicol Environ Health; 1997 Dec; 52(6):475-515. PubMed ID: 9397182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites.
    Hack CE; Chiu WA; Jay Zhao Q; Clewell HJ
    Regul Toxicol Pharmacol; 2006 Oct; 46(1):63-83. PubMed ID: 16889879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian population analysis of a washin-washout physiologically based pharmacokinetic model for acetone.
    Mörk AK; Jonsson F; Johanson G
    Toxicol Appl Pharmacol; 2009 Nov; 240(3):423-32. PubMed ID: 19660484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards quantitative uncertainty assessment for cancer risks: central estimates and probability distributions of risk in dose-response modeling.
    Kopylev L; Chen C; White P
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):203-7. PubMed ID: 17905499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethylene.
    Covington TR; Robinan Gentry P; Van Landingham CB; Andersen ME; Kester JE; Clewell HJ
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):1-18. PubMed ID: 16901594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the relevance of rodent data on chemical interactions for health risk assessment purposes: a case study with dichloromethane-toluene mixture.
    Pelekis M; Krishnan K
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):79-86. PubMed ID: 9056503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically-based pharmacokinetic modeling of benzene in humans: a Bayesian approach.
    Yokley K; Tran HT; Pekari K; Rappaport S; Riihimaki V; Rothman N; Waidyanatha S; Schlosser PM
    Risk Anal; 2006 Aug; 26(4):925-43. PubMed ID: 16948686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points.
    Bogen KT; Gold LS
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):26-42. PubMed ID: 9056499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian analysis of a physiologically based pharmacokinetic model for perchloroethylene in humans.
    Qiu J; Chien YC; Bruckner JV; Fisher JW
    J Toxicol Environ Health A; 2010; 73(1):74-91. PubMed ID: 19953421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.
    Evans MV; Chiu WA; Okino MS; Caldwell JC
    Toxicol Appl Pharmacol; 2009 May; 236(3):329-40. PubMed ID: 19249323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.