BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16443157)

  • 1. Protein oxidation in plant mitochondria detected as oxidized tryptophan.
    Møller IM; Kristensen BK
    Free Radic Biol Med; 2006 Feb; 40(3):430-5. PubMed ID: 16443157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectral evidence for carbonate-anion-radical-induced posttranslational modification of tryptophan to kynurenine in human Cu, Zn superoxide dismutase.
    Zhang H; Joseph J; Crow J; Kalyanaraman B
    Free Radic Biol Med; 2004 Dec; 37(12):2018-26. PubMed ID: 15544920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometric characterization of peptides containing different oxidized tryptophan residues.
    Todorovski T; Fedorova M; Hoffmann R
    J Mass Spectrom; 2011 Oct; 46(10):1030-8. PubMed ID: 22012669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras.
    Bauw G; Nielsen HV; Emmersen J; Nielsen KL; Jørgensen M; Welinder KG
    FEBS J; 2006 Aug; 273(15):3569-84. PubMed ID: 16884497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteomic approach in analyzing heat-responsive proteins in rice leaves.
    Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH
    Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N-terminal extension of plant mitochondrial carrier proteins is removed by two-step processing: the first cleavage is by the mitochondrial processing peptidase.
    Murcha MW; Elhafez D; Millar AH; Whelan J
    J Mol Biol; 2004 Nov; 344(2):443-54. PubMed ID: 15522297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the Drosophila melanogaster mitochondrial proteome.
    Alonso J; Rodriguez JM; Baena-López LA; Santarén JF
    J Proteome Res; 2005; 4(5):1636-45. PubMed ID: 16212416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry.
    Kristensen BK; Askerlund P; Bykova NV; Egsgaard H; Møller IM
    Phytochemistry; 2004 Jun; 65(12):1839-51. PubMed ID: 15276442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potato mitochondrial manganese superoxide dismutase is an RNA-binding protein.
    Fester T; Schuster W
    Biochem Mol Biol Int; 1995 May; 36(1):67-75. PubMed ID: 7545053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of mitochondrial and chloroplast membrane protein complexes from green leaves of potato on blue-native polyacrylamide gels.
    Singh P; Jänsch L; Braun HP; Schmitz UK
    Indian J Biochem Biophys; 2000 Feb; 37(1):59-66. PubMed ID: 10983414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry.
    Xu C; Garrett WM; Sullivan J; Caperna TJ; Natarajan S
    Phytochemistry; 2006 Nov; 67(22):2431-40. PubMed ID: 17046036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of peptides containing 5-hydroxytryptophan, oxindolylalanine, N-formylkynurenine and kynurenine.
    Todorovski T; Fedorova M; Hennig L; Hoffmann R
    J Pept Sci; 2011 Apr; 17(4):256-62. PubMed ID: 21254311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolving and identifying protein components of plant mitochondrial respiratory complexes using three dimensions of gel electrophoresis.
    Meyer EH; Taylor NL; Millar AH
    J Proteome Res; 2008 Feb; 7(2):786-94. PubMed ID: 18189341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress.
    Fedorova M; Todorovsky T; Kuleva N; Hoffmann R
    Proteomics; 2010 Jul; 10(14):2692-700. PubMed ID: 20455213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.
    Qin G; Meng X; Wang Q; Tian S
    J Proteome Res; 2009 May; 8(5):2449-62. PubMed ID: 19239264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of rice leaf, stem and root tissues during growth course.
    Nozu Y; Tsugita A; Kamijo K
    Proteomics; 2006 Jun; 6(12):3665-70. PubMed ID: 16758443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor?
    Linard D; Kandlbinder A; Degand H; Morsomme P; Dietz KJ; Knoops B
    Arch Biochem Biophys; 2009 Nov; 491(1-2):39-45. PubMed ID: 19735641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of tryptophan and methionine residues is implicated in the oxidative inactivation of surfactant protein B.
    Manzanares D; Rodriguez-Capote K; Liu S; Haines T; Ramos Y; Zhao L; Doherty-Kirby A; Lajoie G; Possmayer F
    Biochemistry; 2007 May; 46(18):5604-15. PubMed ID: 17425286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrated and oxidized products of a single tryptophan residue in human Cu,Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite.
    Yamakura F; Matsumoto T; Ikeda K; Taka H; Fujimura T; Murayama K; Watanabe E; Tamaki M; Imai T; Takamori K
    J Biochem; 2005 Jul; 138(1):57-69. PubMed ID: 16046449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products.
    Gracanin M; Hawkins CL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2009 Jul; 47(1):92-102. PubMed ID: 19375501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.