BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16443161)

  • 1. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress.
    Landar A; Oh JY; Giles NM; Isom A; Kirk M; Barnes S; Darley-Usmar VM
    Free Radic Biol Med; 2006 Feb; 40(3):459-68. PubMed ID: 16443161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis.
    Chan HL; Gharbi S; Gaffney PR; Cramer R; Waterfield MD; Timms JF
    Proteomics; 2005 Jul; 5(11):2908-26. PubMed ID: 15954156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for the determination and quantification of the reactive thiol proteome.
    Hill BG; Reily C; Oh JY; Johnson MS; Landar A
    Free Radic Biol Med; 2009 Sep; 47(6):675-83. PubMed ID: 19527783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis.
    Baty JW; Hampton MB; Winterbourn CC
    Proteomics; 2002 Sep; 2(9):1261-6. PubMed ID: 12362344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis.
    Hochgräfe F; Mostertz J; Albrecht D; Hecker M
    Mol Microbiol; 2005 Oct; 58(2):409-25. PubMed ID: 16194229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D
    Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for determining the modification of protein thiols by reactive lipids.
    Oh J; Johnson MS; Landar A
    Methods Cell Biol; 2007; 80():417-34. PubMed ID: 17445707
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption.
    Venkatraman A; Landar A; Davis AJ; Ulasova E; Page G; Murphy MP; Darley-Usmar V; Bailey SM
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of reversible protein thiol modifications in tissues.
    Rogers LK; Leinweber BL; Smith CV
    Anal Biochem; 2006 Nov; 358(2):171-84. PubMed ID: 17007807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations.
    Sheehan D
    Biochem Biophys Res Commun; 2006 Oct; 349(2):455-62. PubMed ID: 16956583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic approaches to oxidative protein modifications implicated in the mechanism of aging.
    Toda T; Nakamura M; Morisawa H; Hirota M; Nishigaki R; Yoshimi Y
    Geriatr Gerontol Int; 2010 Jul; 10 Suppl 1():S25-31. PubMed ID: 20590839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytosolic and nuclear protein targets of thiol-reactive electrophiles.
    Dennehy MK; Richards KA; Wernke GR; Shyr Y; Liebler DC
    Chem Res Toxicol; 2006 Jan; 19(1):20-9. PubMed ID: 16411652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of oxidative stress on protein thiols in the blue mussel Mytilus edulis: proteomic identification of target proteins.
    McDonagh B; Sheehan D
    Proteomics; 2007 Sep; 7(18):3395-403. PubMed ID: 17722142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide and cardiobiology-methods for intact hearts and isolated myocytes.
    Hare JM; Beigi F; Tziomalos K
    Methods Enzymol; 2008; 441():369-92. PubMed ID: 18554546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of protein modification by oxidants.
    Hawkins CL; Morgan PE; Davies MJ
    Free Radic Biol Med; 2009 Apr; 46(8):965-88. PubMed ID: 19439229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfhydryl-specific probe for monitoring protein redox sensitivity.
    Lee JJ; Ha S; Kim HJ; Ha HJ; Lee HY; Lee KJ
    ACS Chem Biol; 2014 Dec; 9(12):2883-94. PubMed ID: 25354229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.