BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16443161)

  • 21. Detecting changes in the thiol redox state of proteins following a decrease in oxygen concentration using a dual labeling technique.
    Lui JK; Lipscombe R; Arthur PG
    J Proteome Res; 2010 Jan; 9(1):383-92. PubMed ID: 19894774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Labeling of antibodies by in situ modification of thiol groups generated from selenol-catalyzed reduction of native disulfide bonds.
    Singh R; Maloney EK
    Anal Biochem; 2002 May; 304(2):147-56. PubMed ID: 12009690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Difference gel electrophoresis based on lys/cys tagging.
    Westermeier R; Scheibe B
    Methods Mol Biol; 2008; 424():73-85. PubMed ID: 18369854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Marked difference in cytochrome c oxidation mediated by HO(*) and/or O(2)(*-) free radicals in vitro.
    Thariat J; Collin F; Marchetti C; Ahmed-Adrar NS; Vitrac H; Jore D; Gardes-Albert M
    Biochimie; 2008 Oct; 90(10):1442-51. PubMed ID: 18555026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modification by homocysteine thiolactone affects redox status of cytochrome C.
    Perła-Kaján J; Marczak Ł; Kaján L; Skowronek P; Twardowski T; Jakubowski H
    Biochemistry; 2007 May; 46(21):6225-31. PubMed ID: 17474717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative proteomic approaches for the isolation of proteins interacting with thioredoxin.
    Marchand C; Le Maréchal P; Meyer Y; Decottignies P
    Proteomics; 2006 Dec; 6(24):6528-37. PubMed ID: 17163439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different carbon sources affect lifespan and protein redox state during Saccharomyces cerevisiae chronological ageing.
    Magherini F; Carpentieri A; Amoresano A; Gamberi T; De Filippo C; Rizzetto L; Biagini M; Pucci P; Modesti A
    Cell Mol Life Sci; 2009 Mar; 66(5):933-47. PubMed ID: 19205622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress in the aging murine olfactory bulb: redox proteomics and cellular localization.
    Vaishnav RA; Getchell ML; Poon HF; Barnett KR; Hunter SA; Pierce WM; Klein JB; Butterfield DA; Getchell TV
    J Neurosci Res; 2007 Feb; 85(2):373-85. PubMed ID: 17131389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of carbonyl-modified proteins in interfibrillar rat mitochondria using N'-aminooxymethylcarbonylhydrazino-D-biotin as an aldehyde/keto-reactive probe in combination with Western blot analysis and tandem mass spectrometry.
    Chung WG; Miranda CL; Maier CS
    Electrophoresis; 2008 Mar; 29(6):1317-24. PubMed ID: 18348219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thiyl radical reaction with amino acid side chains: rate constants for hydrogen transfer and relevance for posttranslational protein modification.
    Nauser T; Pelling J; Schöneich C
    Chem Res Toxicol; 2004 Oct; 17(10):1323-8. PubMed ID: 15487892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-thiol oxidation, from single proteins to proteome-wide analyses.
    Le Moan N; Tacnet F; Toledano MB
    Methods Mol Biol; 2008; 476():181-98. PubMed ID: 19157017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of protein carbonyls by means of biotin hydrazide-streptavidin affinity methods.
    Hensley K
    Methods Mol Biol; 2009; 536():457-62. PubMed ID: 19378083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomics identification of oxidatively modified proteins in brain.
    Sultana R; Perluigi M; Butterfield DA
    Methods Mol Biol; 2009; 564():291-301. PubMed ID: 19544029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thiol chemistry and specificity in redox signaling.
    Winterbourn CC; Hampton MB
    Free Radic Biol Med; 2008 Sep; 45(5):549-61. PubMed ID: 18544350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phospholipid-protein adducts of lipid peroxidation: synthesis and study of new biotinylated phosphatidylcholines.
    Tallman KA; Kim HY; Ji JX; Szapacs ME; Yin H; McIntosh TJ; Liebler DC; Porter NA
    Chem Res Toxicol; 2007 Feb; 20(2):227-34. PubMed ID: 17305406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A one-carbon modification of protein lysine associated with elevated oxidative stress in human substantia nigra.
    Floor E; Maples AM; Rankin CA; Yaganti VM; Shank SS; Nichols GS; O'Laughlin M; Galeva NA; Williams TD
    J Neurochem; 2006 Apr; 97(2):504-14. PubMed ID: 16539661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain PP2A is modified by thiol-disulfide exchange and intermolecular disulfide formation.
    Foley TD; Kintner ME
    Biochem Biophys Res Commun; 2005 May; 330(4):1224-9. PubMed ID: 15823574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.