BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16443650)

  • 1. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors.
    Braun T; Backmann N; Vögtli M; Bietsch A; Engel A; Lang HP; Gerber C; Hegner M
    Biophys J; 2006 Apr; 90(8):2970-7. PubMed ID: 16443650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of protein motion during the photochemical reaction cycle of bacteriorhodopsin.
    Bálint Z; Végh GA; Popescu A; Dima M; Ganea C; Varó G
    Langmuir; 2007 Jun; 23(13):7225-8. PubMed ID: 17503866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force-induced conformational change of bacteriorhodopsin.
    Müller DJ; Büldt G; Engel A
    J Mol Biol; 1995 Jun; 249(2):239-43. PubMed ID: 7783190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary ultrasonication affects the rate of the bacteriorhodopsin bleaching and the effectiveness of the reconstitution process in bacterioopsin.
    Druzhko AB; Pirutin SK
    Photochem Photobiol; 2014; 90(5):1207-10. PubMed ID: 24678657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin.
    Subramaniam S; Henderson R
    Nature; 2000 Aug; 406(6796):653-7. PubMed ID: 10949309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin.
    Schenkl S; van Mourik F; van der Zwan G; Haacke S; Chergui M
    Science; 2005 Aug; 309(5736):917-20. PubMed ID: 16081732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface chemical functionalization of single walled carbon nanotubes with a bacteriorhodopsin mutant.
    Ingrosso C; Bianco GV; Lopalco P; Tamborra M; Curri ML; Corcelli A; Bruno G; Agostiano A; Siciliano P; Striccoli M
    Nanoscale; 2012 Oct; 4(20):6434-41. PubMed ID: 22961248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcantilever sensing and actuation with end-grafted stimulus-responsive elastin-like polypeptides.
    Valiaev A; Abu-Lail NI; Lim DW; Chilkoti A; Zauscher S
    Langmuir; 2007 Jan; 23(1):339-44. PubMed ID: 17190524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directly probing rapid membrane protein dynamics with an atomic force microscope: a study of light-induced conformational alterations in bacteriorhodopsin.
    Lewis A; Rousso I; Khachatryan E; Brodsky I; Lieberman K; Sheves M
    Biophys J; 1996 May; 70(5):2380-4. PubMed ID: 9172763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin.
    Magyari K; Bálint Z; Simon V; Váró G
    J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine.
    Möller C; Büldt G; Dencher NA; Engel A; Müller DJ
    J Mol Biol; 2000 Aug; 301(4):869-79. PubMed ID: 10966792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors.
    Braun T; Ghatkesar MK; Backmann N; Grange W; Boulanger P; Letellier L; Lang HP; Bietsch A; Gerber C; Hegner M
    Nat Nanotechnol; 2009 Mar; 4(3):179-85. PubMed ID: 19265848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
    Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N
    J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray diffraction of bacteriorhodopsin photocycle intermediates.
    Lanyi JK
    Mol Membr Biol; 2004; 21(3):143-50. PubMed ID: 15204622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot enhancement of bacteriorhodopsin-based electrodes.
    Griep MH; Walczak KA; Winder EM; Lueking DR; Friedrich CR
    Biosens Bioelectron; 2010 Feb; 25(6):1493-7. PubMed ID: 19954962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structures of bacteriorhodopsin with different retinal-Schiff base orientations--computer modeling and energy minimization studies.
    Sankararamakrishnan R; Vishveshwara S
    J Biomol Struct Dyn; 1992 Jun; 9(6):1073-95. PubMed ID: 1637503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling the conformational space of membrane protein surfaces with the AFM.
    Scheuring S; Müller DJ; Stahlberg H; Engel HA; Engel A
    Eur Biophys J; 2002 Jun; 31(3):172-8. PubMed ID: 12029329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcantilever biosensors based on conformational change of proteins.
    Ji HF; Gao H; Buchapudi KR; Yang X; Xu X; Schulte MK
    Analyst; 2008 Apr; 133(4):434-43. PubMed ID: 18365110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.